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Abstract 

Besides the designation of a major accident cause and accident blackspots (i.e., accident 

accumulation points on the road network), we currently face a knowledge gap in the 

multivariate statistical investigation of co-occurring accident conditions. Official road traffic 

accident statistics in Austria indicate one explicit accident cause (or one explicit condition) for 

each road traffic accident (e.g., speeding). However, investigating co-occurring conditions 

(e.g., 'speeding', 'wet road', 'no safety belt applied' and 'probationary driving licence') is 

essential if we consider accidents as multicausal instead of monocausal events. It is, of course, 

impossible to depict all potential accident-related conditions. Still, the official Austrian road 

traffic accident database (UDM) provides a solid source to identify co-occurring accident-

related variables. The UDM includes more than 100 accident-related variables, which can help 

understand accident conditions and causes in more detail. In-depth knowledge of accident 

conditions may be of interest in deriving (target-group specific) prevention measures to deal 

with the remaining number of fatal and severe road traffic accidents in Austria. Therefore, this 

thesis aims to detect recurring combinations of accident-related variables, which we designate 

as blackpatterns. 

Consequently, this thesis applies a pattern recognition approach among single-vehicle 

accidents with single occupation and personal injury that occurred on the Austrian road 

network and outside the built-up area between 2012 and 2019 (n=20.293). It uses driver-, 

vehicle-, roadway- and situation-related variables to detect recurring variable combinations 

(blackpatterns). These variables (over 100 in total) are part of the official Austrian road traffic 

accident database (UDM). However, reprocessing the official database is essential to conduct 

pattern recognition methods with the data. It is to point out that this thesis explores 

blackpatterns underlying historical road traffic accident records. This thesis does not present 

an accident prediction model. It does not include data on traffic performance to derive 

statements on the overall probability of a road traffic accident. 

The motivation of this thesis is to focus on the general applicability of the proposed methods. 

Firstly, we point out statistical characteristics of road traffic accident data (i.e., uncertainty, noise 

and bias, rare events, heterogeneity, and over-dispersion). Secondly, we discuss existing 

pattern recognition methods for road traffic accident data. Thirdly, we apply selected pattern 

recognition methods on the road traffic accident sample. These methods comprise binomial 

logistic regression, decision trees, Bayesian networks and a developed pattern recognition 

method based on the frequencies of variable combinations (PATTERMAX-method). 

In a primary step, we conduct descriptive statistical analyses to estimate the relationship 

between each recorded accident-related variable and the target variable severe casualties 

(accidents with fatal or severe injury). We create contingency tables, calculate conditional and 

joint probabilities, apply Fisher's exact test and estimate the Phi coefficient. Also, we generate 
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a robust parameter estimation (95% confidence intervals showing the likelihood of a variable 

and severe or fatal accidents to occur) by applying a bootstrap resampling method on the 

newly established accident database. We calculate a so-called maximum combination value as 

an important measure towards blackpattern detection. This value tells us how often a specific 

variable co-occurs with (an)other accident-related variable(s). We then use binomial logistic 

regression to estimate each variable's impact on severe road traffic accidents with an odds 

ratio (i.e., the strength of the relationship between an accident-related variable and the target 

variable severe casualties compared to all observed variables). By knowing which variable 

appears to increase the risk of a severe road traffic accident, we can assess the overall impact 

of the detected blackpatterns. 

As the next step towards blackpattern recognition, we grow decision trees using the CHAID-

algorithm. Up to this point, binomial logistic regression and decision trees help us identify 

critical variables that aggravate an accident outcome and the degree of injury, respectively. 

However, since we are interested in gaining in-depth knowledge of recurring variable 

combinations (blackpatterns), we zoom further into the underlying data structures. 

That being the case, we apply a probabilistic Bayesian network paradigm and a developed 

pattern detection method (PATTERMAX-method) to the data. Using these approaches, we 

finally detect blackpatterns and conclude the pattern recognition process with a statistical 

evaluation of whether the detected blackpatterns show a significant relationship with the target 

variable severe casualties. Like the beginning, so the end, and we calculate Fisher's exact test 

and the Phi coefficient. 

We summarize the most aggravating accident-related variables and blackpatterns in the 

discussion chapter. Furthermore, we compare the applied pattern recognition methods. 

Finally, we highlight the advantages and limitations of the PATTERMAX-method in 

combination with binomial logistic regression to gain in-depth knowledge about accident 

circumstances. The combined application of both methods enables a precise detection and 

comparison of blackpatterns. For example, do blackpatterns among female drivers differ from 

blackpatterns among male drivers? Do accident patterns on regional roads within an 80 km/h 

speed limit differ from those on a 100 km/h speed limit? Additionally, the combined approach 

of the PATTERMAX-method and binomial logistics regression enables the assessment of the 

detected blackpatterns with the help of an odds ratio. 

Within the research outlook, we propose expanding the investigation towards accidents with 

several parties involved. The newly established accident database might also serve as a reliable 

source for accident prediction. Especially, the estimated 95% confidence intervals may be of 

interest to establish a prediction model. 
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Kurzfassung 

Neben der Benennung von Hauptunfallursachen und Unfallschwerpunkten im Straßennetz 

gibt es derzeit eine Wissenslücke bei der multivariaten statistischen Untersuchung von 

gemeinsam auftretenden Unfallbedingungen. Die amtliche Straßenverkehrsunfallstatistik in 

Österreich weist für jeden Straßenverkehrsunfall eine explizite Unfallursache (oder eine 

explizite Bedingung) aus (z.B. Geschwindigkeitsüberschreitung). Die Untersuchung von 

gleichzeitig auftretenden Bedingungen (z.B. "Geschwindigkeitsüberschreitung", "nasse 

Fahrbahn", "nicht angeschnallt" und "Probeführerschein") ist jedoch unerlässlich, wenn wir 

Unfälle als multikausale und nicht als monokausale Ereignisse betrachten. Es ist zwar nicht 

möglich alle möglichen Unfallbedingungen abzubilden, aber die offizielle österreichische 

Straßenverkehrsunfalldatenbank (UDM) bietet eine solide Quelle für die Identifizierung von 

gemeinsam auftretenden, unfallbezogenen Variablen. Die UDM enthält mehr als 100 

unfallrelevante Variablen, die helfen können, Unfallbedingungen und -ursachen genauer zu 

verstehen. Ein vertieftes Wissen über die Unfallbedingungen kann von Interesse sein, um 

(zielgruppenspezifische) Präventionsmaßnahmen abzuleiten, um die verbleibende Zahl der 

tödlichen und schweren Straßenverkehrsunfälle in Österreich zu reduzieren. Ziel dieser Arbeit 

ist es, wiederkehrende Kombinationen von unfallbeschreibenden Variablen zu erkennen, die 

wir als Variablenmuster (blackpatterns) bezeichnen. 

Diese Arbeit wendet daher einen Mustererkennungsansatz bei Unfällen mit einem Fahrzeug 

mit Einzelbesetzung und Personenschaden an, die sich zwischen 2012 und 2019 auf dem 

österreichischen Straßennetz außerorts ereignet haben (n=20.293). Es werden fahrer-, 

fahrzeug-, straßen- und situationsbezogene Variablen verwendet, um wiederkehrende 

Variablenkombinationen (blackpatterns) zu erkennen. Diese Variablen (insgesamt über 100) 

sind Teil der offiziellen österreichischen Straßenverkehrsunfalldatenbank (UDM). Um mit den 

amtlichen Daten Mustererkennungsmethoden durchführen zu können, ist jedoch eine 

Neuaufbereitung der amtlichen Datenbank notwendig. Die Neuaufbereitung der Datenbank 

stellt daher einen zentralen Bestandteil dieser Arbeit dar. Es ist wichtig hervorzuheben, dass in 

dieser Arbeit historische Straßenverkehrsunfälle untersucht werden und kein 

Unfallvorhersagemodell vorgestellt wird. Die Arbeit bezieht auch keine Daten zum 

Verkehrsgeschehen oder zur Verkehrsleistung ein. Es können daher keine Aussagen über die 

generelle Eintrittswahrscheinlichkeit eines Straßenverkehrsunfalls abgeleitet werden. 

Die Motivation dieser Arbeit ist es, sich auf die allgemeine Anwendbarkeit der vor-

geschlagenen Methoden zu konzentrieren. Zunächst wird auf die statistischen Eigenschaften 

von Straßenverkehrsunfalldaten hingewiesen (d.h. Unsicherheit, der sogenannte ‚evaluation 

bias‘, seltene Ereignisse, Heterogenität etc.). Zweitens werden bestehende Muster-

erkennungsmethoden für Straßenverkehrsunfalldaten diskutiert. Drittens werden ausgewählte 

Mustererkennungsmethoden auf die Stichprobe der Straßenverkehrsunfälle angewandt. 

Diese Methoden umfassen binomiale logistische Regression, Entscheidungsbäume, 
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Bayes'sche Netze und eine entwickelte Mustererkennungs-methode, die auf den Häufigkeiten 

von Variablenkombinationen basiert (PATTERMAX-Methode). 

Zunächst werden deskriptive statistische Analysen durchgeführt, um die Beziehung zwischen 

jeder erfassten unfallbezogenen Variable und der Zielvariable „schwere Unfälle“ (das sind 

Unfälle mit tödlichen oder schweren Verletzungen) zu schätzen. Es werden Kontingenztabellen 

erstellt, bedingte und gemeinsame Wahrscheinlichkeiten berechnet, der exakte Test nach 

Fisher angewandt und Phi-Koeffizienten geschätzt. Außerdem wird eine robuste 

Parameterschätzung durchgeführt (95 %-Konfidenzintervalle, welche die Wahrscheinlichkeit 

des Auftretens einer Variablen und schwerer Unfälle angeben), indem ein Bootstrap-

Resampling-Verfahren auf die neu erstellte Unfalldatenbank angewandt wird. Weiters wird ein 

sogenannter höchster Kombinationswert als wichtiges Maß für die Erkennung von 

Variablenmustern berechnet. Dieser Wert gibt an, wie oft eine bestimmte Variable mit (einer) 

anderen unfallbezogenen Variable(n) gemeinsam vorkommt. Anschließend wird eine 

binomiale logistische Regression durchgeführt, um den Einfluss jeder Variable auf schwere 

und tödliche Straßenverkehrsunfälle mit einem Odds Ratio zu schätzen (d. h. die Stärke der 

Beziehung zwischen einer unfallbezogenen Variable und der Zielvariable „schwere Unfälle“ im 

Vergleich zu allen beobachteten Variablen). Mit den Schätzungen, welche Variable das Risiko 

eines schweren oder tödlichen Straßenverkehrsunfalls zu erhöhen scheint, kann anschließend 

die Gesamtwirkung der noch zu entdeckenden Variablenmuster (blackpatterns) eingestuft 

werden. Als nächsten Schritt zur Erkennung von Variablenmustern werden 

Entscheidungsbäume mit dem CHAID-Algorithmus erstellt. Bis zu diesem Punkt helfen die 

binomiale logistische Regression und die Entscheidungsbäume dabei, kritische Variablen zu 

identifizieren, die den Unfallhergang bzw. den Grad der Verletzung erhöhen. Da der Fokus 

jedoch darauf liegt, vertiefte Kenntnisse über wiederkehrende Variablenkombinationen zu 

erlangen, werden die zugrunde liegenden Datenstrukturen noch tiefer analysiert. Zu diesem 

Zweck werden Bayes'sches Netzwerke und eine entwickelte Methode zur Mustererkennung 

(PATTERMAX-Methode) auf die Daten angewandt. Mit diesen Ansätzen werden schließlich 

wiederkehrende Variablenkombinationen detektiert. Die statistische Auswertung, ob die 

detektierten Muster einen signifikanten Zusammenhang mit der Zielvariablen „schwere 

Unfälle“ aufweisen, schließt den Mustererkennungsprozess ab. Wie der Anfang, so das Ende, 

und es werden der exakte Test nach Fisher und der Phi-Koeffizient dazu verwendet. 

Im Diskussionskapitel werden die schwerwiegendsten unfallbezogenen Variablen und Muster 

zusammengefasst. Außerdem werden die angewandten Mustererkennungsmethoden 

diskutiert. Abschließend werden Vorteile und Grenzen der PATTERMAX-Methode in 

Kombination mit der binomialen logistischen Regression aufgezeigt, um vertiefte Erkenntnisse 

über das Unfallgeschehen zu gewinnen. Im Rahmen des Forschungsausblicks wird die 

Ausweitung der Methoden auf Unfälle mit mehreren Beteiligten vorgeschlagen. Die neu 

erstellte Unfalldatenbank könnte auch als zuverlässige Quelle für die Unfallvorhersage dienen. 

Insbesondere die geschätzten 95%-Konfidenzintervalle könnten für die Erstellung eines 

Vorhersagemodells von Interesse sein. 
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1. Introduction 

1.1 Relevance and problem statement 

Road traffic accidents result in substantial material and immaterial costs. Material costs, for 

example, include damage to vehicles, administrative costs, or medical costs. Immaterial costs 

refer to shorter lifetimes, sufferings, pain, or sorrow (European Commission, 2020, p. 38). The 

Austrian Accident Cost Accounting from 2017 (Herry Conuslt & KFV, 2017, p. 4) specifies the 

economic costs of one single fatal road traffic accident with 3.313.309 euros and accidents 

costs per severe injury with 429.517 euros (see table 1). Thus, traffic safety and the definition 

of appropriate prevention measures are significant issues in almost all traffic policy plans, such 

as the Austrian Road Safety Strategy 2030 (KFV & FGM, 2021). Therefore, information about 

accident accumulation points (i.e., blackspots), accident causes, and co-occurring conditions 

leading to fatal or severe accidents are essential for deducing appropriate prevention 

measures and policy decisions. However, when it comes to analysing conditions conducive to 

fatal and severe road traffic accidents (i.e., recurring accident patterns), we experience a 

knowledge gap. 

   2016 at 

2016 prices 

2011 at 

2011 prices 

2004 at 

2004 prices 

1993 at 

1993 prices 

Total 

Accident 

Costs 

including human 

suffering 

Mio. 

EUR 
9.701 10.088 10.518  

excluding human 

suffering 

Mio. 

EUR 
5.203 5.278 5.184 3.818 

Accident 

costs per 

fatality 

including human 

suffering 
EUR 3.316.309 3.016.194 2.461.345  

excluding human 

suffering 
EUR 1.390.800 1.401.085 1.287.004 805.233 

Accident 

costs per 

severe injury 

including human 

suffering 
EUR 429.517 381.480 291.275  

excluding human 

suffering 
EUR 87.097 80.166 55.925 43.065 

Accident 

costs per 

light injury 

including human 

suffering 
EUR 30.575 26.894 20.896  

excluding human 

suffering 
EUR 4.235 3.716 2.792 3.695 

Material damage per accident EUR 5.481 5.245 4.075  

 
Table 1: Total Accident Costs in Austria. Source: Herry Conuslt & KFV, 2017, p. 4 
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The definition of appropriate prevention measures to reduce the remaining number of fatal 

and severe accidents is challenging. Until today, besides accident causes, in-depth knowledge 

about recurring accidents is still missing. The thesis's hypothesis assumes that road traffic 

accidents do not represent monocausal events but a complex interplay between road users, 

vehicles, infrastructure, and the environment. Superordinate framework conditions (e.g., traffic 

policy, StVO, safety culture etc.) and how police officers record accidents strongly influence 

this interplay. For example, assessing the alleged main cause of the accident represents a 

subjective assessment by the police officer who fills out the accident data sheet on site. 

Depending on how differently police officers may be trained on accident surveys, there always 

exists a so-called evaluation bias going along with road traffic accident records. This thesis 

does not examine these superordinate parameters. The focus is placed exclusively on 

examining the officially available traffic accident data. However, we will point out challenges 

going along with road traffic accident data (see chapter 2.1). 

Thus, this thesis ties in with a detailed investigation of recurring accident conditions. In addition 

to the cause of the accident, the thesis presents an exploratory research approach to analyse 

recorded accident-related variables. It investigates whether there exist recurring combinations 

of these variables (blackpatterns). Accident-related variables for single-vehicle accidents 

include driver-, vehicle-, roadway-, and situation-related variables. Other involved road users 

(pedestrians, cyclists, passengers) represent additional variables in other accident types. Thus, 

they do not occur in our selected road traffic accident sample (chapter 3.2 substantiates the 

sample selection). 

The combined analysis of these variables is in accord with the Austrian "Safe System" approach. 

The "Safe System" approach is the philosophy of the Austrian Road Safety Strategy 2030. It 

finds its basis in the Swedish "Vision Zero" (Tingvall & Haworth, 1999) and the Dutch 

"Sustainable Safety" concept of the 1990s. Table 2 shows the principles of the "Safe Systems" 

approach, extended by a column on how this thesis contributes to its targets. 
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Question 
Traditional 

approach 

Safety System 

approach 

Embedding the Safety System approach 

into this dissertation 

What is the 

problem? 
Accidents 

Fatalities and 

severe injuries 

Investigation of fatal and severe road traffic 

accidents 

What causes 

the problem? 
Misconduct 

People make 

mistakes and 

are vulnerable 

Investigation of single-vehicle accidents with 

single-occupancy. Thus, new insights on driving 

behaviour and mistakes are retrieved  

Who is 

responsible? 

Traffic 

participants 

System 

designer and 

users 

The thesis generated evidence-based knowledge 

on driver-, vehicle-, roadway-, and situation-

related variables 

Need for 

safety? 

People do not 

want safety 

People want 

safety 

Among fatal and severe accidents, this thesis 

quantifies the share of involved drivers that did 

not apply safety belt 

What is an 

appropriate 

target? 

Optimal 

number of 

fatalities and 

severe injuries 

Elimination of 

fatalities and 

severe injuries 

Setting up appropriate intervention measures to 

reduce the remaining number of fatalities and 

severe injuries is challenging. Thus, in-depth 

knowledge about recurring accident-

circumstances (i.e., blackpatterns) is required and 

retrieved through this dissertation 

 
Table 2: Embedding the Safe System approach into this dissertation.  

Source: Austrian Road Safety Strategy 2030 and author's amendments. 

 

This thesis investigates recurring accident patterns (blackpatterns) among severe and fatal 

road traffic accidents (severe casualties), which strongly refers to the overall target of 

eliminating fatal and severe road traffic accidents. On the premise that people make mistakes 

and are vulnerable this thesis analyses driver-related accident variables and recurring 

combinations of these variables. For example, if the variables' probationary driving licence', 

'impairment by alcohol', and 'speeding' occur combinedly, it counts the frequency of this 

combination. Furthermore, it analyses whether there exists a significant correlation between 

the variables' impairment by alcohol' and 'no safety belt applied'.  To gain even more detailed 

information on driving behaviour, this thesis investigates single-vehicle accidents with single-

occupancy. This particular sample of accidents helps to retrieve deeper insights into human 

failure in the context of road traffic accidents. Additionally, this thesis provides an evidence-

based and analytical foundation for system designers and users by considering further 

accident-related variables such as vehicle characteristics, roadway conditions, and weather 

conditions. Before starting with the pattern recognition approaches, the following chapters 

present relevant information on Austria's road traffic accident development, an overview of 

major accident causes, and the definition of accident accumulation points (i.e., blackspots).   
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1.2 Development of road traffic accidents in Austria 

In Austria, fatal road traffic accidents peaked in 1972 with 2.948 fatal road accidents, leading 

to the realisation of numerous intervention measures (e.g., speed limits or obligatory usage of 

seatbelts and helmets) to improve traffic safety. The result is a significant reduction in fatal road 

accidents. Figure 2 blends the number of fatal road traffic accidents with the established 

intervention measures. 

Even if the number of fatal road accidents has decreased over the years, we can now see that 

it is still a significant challenge for transportation system planning to deal with the remaining 

number of fatal road accidents.  

When comparing fatal accidents per million inhabitants in 2019 (see figure 1), Austria shows a 

rate of 47 traffic fatalities per 1 million inhabitants and ranks 11th with other EU countries. 

Sweden, Ireland and Malta had the lowest rate of fatal road traffic accidents in the European 

Union in 2019. 

 

Figure 1: Number of fatal road traffic accidents in select European countries in 2019.  
Author's compilation. Source: Author's compilation based on European Commission (2019). 
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Knowledge about accident causes and blackspots provides substantial clues for deriving 

appropriate intervention measures. On average, 98 accidents can be recorded per day in 

2019.  A fatal road accident occurs every 21 hours. Therefore, an in-depth analysis of recurring 

variable combinations seems to be a fundamental approach to generate further understanding 

of accident circumstances. 

 

Figure 2: Development of fatal road traffic accidents in Austria with the realisation years of 
selected prevention measures and an indication of the two traffic safety programmes. 
Observation period: 1961 to 2019. Sources: Author’s compilation based on Statistik Austria 
(2020) and KFV (Kuratorium für Verkehrssicherheit). 

 

The following heatmap (see figure 3) illustrates the development of fatal road traffic accidents 

in the Austrian federal states per 100.000 inhabitants. 
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Figure 3: Development (2012-2019) of fatal road traffic accidents with single vehicles and a 
single occupation and personal injury on the Austrian road network outside the built-up area. 

Illustrated for the Austrian federal states per 100.000 inhabitants. Source: Author's 
compilation based on Statistics Austria (2020). 

 

1.3 Major accident causes 

The Austrian Ministry of the Interior (Bundesministerium für Inneres (BMI) II, 2020) defines the 

following alleged accident causes: 

• unadjusted speed or speeding, 

• distraction, 

• priority violations, 

• misconduct by pedestrians, 

• health (e.g., cardiovascular failure), 

• overtaking, 

• disregarding bids and bans, 

• inadequate safety distance, 

• fatigue, and 

• technical defects 

As figure 4 illustrates, unadjusted speed, distraction and priority violations hold the highest 

shares among accident causes (above ten per cent). It is important to mention that these 

accident causes represent the accident causes across all types of road traffic accidents and not 

explicitly those for single-vehicle accidents with a single occupation. Therefore, other accident 

circumstances may be identified in the sample of this thesis. Thus, an advantage of this thesis 

Kärnten Tirol Vorarlberg Oberösterreich Niederösterreich Steiermark Salzburg Burgenland Wien

2012 8 5 4 7 14 8 4 13 1
min=0

2013 5 6 2 5 9 6 5 10 1

2014 5 4 1 5 10 6 3 9 1

2015 8 5 3 5 10 6 5 13 0

2016 8 4 2 6 8 7 6 6 0

2017 8 5 2 3 8 6 5 10 1

2018 5 4 2 5 7 4 4 8 1

2019 6 4 3 4 7 5 2 7 2
max=14

severe and fatal single-vehicle road traffic accidents with a single occupation occurring outside the built-up area 
between 2012-2012. Illustrated per year, region and 100.000 inhabitants (total number of accidents = 3.431).

se
ve

re
 c

as
ua

lti
es

 in
 to

ta
l n

um
be

rs
 

pe
r y

ea
r a

nd
 re

gi
on



14 
 

is to extract detailed knowledge for a specific accident type. If the method proves to be 

applicable, we will expand it towards further accident types. 

One must emphasize that the designation of a major accident cause represents a primarily 

subjective assessment. For each road traffic accident, the police authorities determine the 

alleged cause of the accident on site when filling out the accident data sheet. Depending on 

how differently police officers may be trained on accident surveys, there will always exist a so-

called evaluation bias going along with road traffic accident records. This thesis does not 

examine these superordinate parameters. The focus is placed exclusively on examining the 

officially available traffic accident data. However, we will point out limitations of road traffic 

accident data (see chapter 2.1). 

The following is a selection of causes of accidents that require further specification. 

Speeding: Speeding includes exceeding the maximum speed limit at the accident scene and 

speed not adapted to visibility, road, and weather conditions. 

Distraction: Distraction includes lack of concentration, visual and mental distraction, and all 

non-driving activities such as eating, drinking, reading, smoking, picking up objects etc.  

Impairment due to drugs, medication, overtiredness or health impairment: The determination 

of impairment may refer to medical assessment, the police officer's assessment, or questioning 

the driver. 

 

 

Figure 4: Major accident causes in Austria (2020). Source: BMI, 2020. 
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1.4 Blackspots 

The definition of road accident accumulation points (blackspots) is part of the guideline on 

traffic safety inspection of the Austrian Research Association for Roads, Railways and Transport. 

The guideline designates a node or road section up to a length of 250 metres as an accident 

blackspot if: 

• at least three similar accidents with personal injury have occurred in three years, and 

the relative coefficient1 reaches or exceeds the value of 0,8 or 

• at least five similar accidents (including accidents involving property damage) have 

occurred in one year. 

An accident accumulation point exists if one of the two criteria applies. 

In Austria, municipalities and districts calculate and visualize their respective accident 

accumulation points. The province of Upper Austria makes accident accumulation points 

accessible via a WebGIS application. Figure 5 illustrates the accident accumulation points in 

Upper Austria. 

 

 

Figure 5: Accident accumulation points in Upper Austria in 2019. Source: doris.at. 

  

 
1The relative coefficient is a value considering the number of accidents in relation to traffic volume. 
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An online map showing accident blackspots throughout Austria does not exist thus far. 

Statistics Austria (Statistik Austria, 2020) provides an interactive map showing the number of 

accidents by district (see figure 6). 

 

 

 

Figure 6: Number of accidents by districts in 2020. Source: statistik.at/atlas/verkehrsunfall. 

 

1.5  Research gap: from blackspots to blackpatterns 

 

Content-related research gap 

In addition to accident causes and accident blackspots, this thesis presents an exploratory 

research approach to identify recurring combinations of accident-related variables: 

blackpatterns. Over the last few years, many analytical approaches have been developed in 

road traffic accident research and analysis. These approaches address the following 

categories: 

• drivers (e.g., driving behaviour, impairments) 

• vehicle (e.g., vehicle performance, technical defects) 

• infrastructure (e.g., road surface condition) 

• situation (e.g., light conditions or weather conditions) 

This dissertation intersects driver-, vehicle-, roadway-, and situation-related variables and 

identifies multivariate road traffic accident patterns. A blackpattern is a multivariate and 

recurring combination of accident-related variables. 
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Data-related research gap 

Due to the complexity of the road traffic accident database (over 180 potential characteristics 

for each road traffic accident), it is difficult to detect patterns and associations lying behind the 

data. Additionally, classic statistical approaches reach their limits to identify patterns within 

large datasets that do not correspond to a normal distribution. Therefore, it is necessary to 

implement and test new methods such as explorative pattern recognition methods on road 

traffic accident data. Currently, we experience a proliferation in the use of data science or 

machine learning techniques to identify patterns in large data sets that would otherwise be 

difficult to detect.  

However, pattern recognition methods would not be directly applicable to the Austrian traffic 

accident database as it currently exists. As we illustrate in chapter 3.3, the original road traffic 

accident database makes it difficult to analyse one specific accident-related characteristic 

exclusively because of multiple characteristics showing up in one single entry or cell. For this 

reason, this thesis presents an approach to reprocess the original road traffic accident data. 

Furthermore, the thesis outlines how to apply suitable explorative methods on road traffic 

accident data on the premise that this dataset is subject to uncertainty and other limitations 

(see chapter 2.1). 

 

1.6  Research question and scope of the thesis 

The current accident-related information, the hypothesis that road traffic accidents cannot be 

considered monocausal events and the described research gap lead to the formulation of the 

following research question: 

 

Based on road traffic accidents occurring in Austria between 2012 to 2019, how can 

multivariate and recurrent accident patterns that consider driver-, vehicle-, situation-, and 

roadway-related characteristics be identified? Do these patterns show a significant relation 

with severe and fatal accidents? To what extent do these patterns contribute to a better 

understanding of accident circumstances? Do these patterns enable a more precise 

delineation of accident prevention measures? 

 

The research question includes the following hypothesis: 

• A road traffic accident does not represent a monocausal event. Therefore, not all 

accident causes might be known yet. There might exist assumptions about accident 

causes and circumstances that are not evidence-based yet. 
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• The official Austrian road traffic accident database (UDM) includes many accident-

related characteristics. We need more advanced statistical methods to investigate 

these characteristics' combined occurrences (blackpatterns), especially heuristic and 

probabilistic approaches. 

 

The main scopes of the dissertation project are: 

• Representation of driver-, vehicle-, roadway-, and situation-related variables and their 

correlation with accident severity (i.e., degree of injury) 

• Identification of recurring variable combinations (blackpatterns) by applying heuristic 

and explorative methods (e.g., Bayesian Theorem) 

• Creation of a consistent and standardized road traffic accident database that 

contributes to road traffic accident analysis and road traffic accident research 

 

The added value to the field of traffic safety and transportation system planning comprises: 

• Identifying recurring accident circumstances (blackpatterns) 

• Evaluating the significance of the detected blackpatterns for severe and fatal road 

traffic accidents 

• Creating a consistent and standardized road traffic accident database that may 

enable the development of traffic prediction models 

• Providing evidence-based in depth-knowledge for the derivation of precise 

measures to improve road safety: not only regarding road conditions but especially 

regarding driving behaviour 

 

This thesis explores patterns underlying historical road traffic accident records. The thesis does 

not present an accident prediction model. It does not include data on traffic performance to 

derive statements on the overall probability of a road traffic accident. 

Also, the alleged accident cause represents a subjective assessment by the police officer who 

fills out the accident data sheet on site. Depending on how differently police officers may be 

trained on accident surveys, there exists a so-called evaluation bias going along with road 

traffic accident records. For this reason, we neglect the officially designated accident cause 

and exclusively focus on recorded accident circumstances regardless of which major accident 

cause was recorded by the police officer. 
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1.7 Thesis structure and applied methods 

The following table provides an overview of this thesis's content and applied methods. 

Chapter Content Method 

1 

accident costs, development of accidents, 

alleged accident causes, and accident 

blackspots 

literature review, desk research, data 

acquisition and visualisation 

2 
characteristics and limitations of road 

traffic accident data 

description of statistical properties such as 

data distribution, uncertainty, noise and bias 

in the context of road traffic accident data 

2 
pattern recognition methods for road 

traffic accident data 
literature review and desk research 

2 
definition of an appropriate accident 

sample 

sample selection based on the characteristics 

of different accident types (see chapter 3.1) 

3 
creation of a coherent road traffic 

accident database 

data processing and application of the binary 

coding scheme 

3 
categorisation of accident-related 

variables 

identification of driver-, vehicle-, roadway- 

and situation-related variables 

3 

definition of the target variable severe 

casualties (i.e., fatal accidents or accidents 

with severe injury) 

reclassification of the recorded degree of 

injury 

4 
variable frequencies among degrees of 

injury 
creation of contingency tables 

4 probability measures  
calculation of conditional probability and 

joint probability 

4 
correlation between an accident-related 

variable and severe casualties 

calculation of Fisher's exact test and Phi 

coefficient 

4 

calculation of the highest number of a 

variable to occur in combination with 

other accident-related variables 

calculation of the combination maximum 

4 
robust parameter estimation (95% 

confidence intervals) for each variable 

bias-corrected and accelerated 

bootstrap (BCa) bootstrap resampling 

 
Table 3: Structure and methods of the thesis. 
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Chapter Content Method 

5 

estimation of the strength of the 

relationship between an accident-related 

variable and the target variable severe 

casualties compared to all observed 

variables 

binomial logistic regression 

6 decision tree generation 
generation of decision trees with the CHAID-

algorithm 

7 Bayesian network generation 
generation of TAN-structured Bayesian 

networks 

8 
blackpattern detection 

(developed method) 
application of the PATTERMAX-method 

9 blackpattern evaluation 
calculation of Fisher's exact test and Phi 

coefficient 

10 Discussion 
review and discussion on the retrieved 

insights as well as on the applied methods  

 
Continuation of table 3: Structure and methods of the thesis. 

 

Chapter one provides an overview of the thesis context, research gap, research questions and 

associated targets, and the scientific classification of the thesis. 

Chapter two represents a theoretical chapter where we dive into road traffic accident data (i.e., 

uncertainty, noise and bias, rare events, heterogeneity, and over-dispersion). Also, we discuss 

pattern recognition methods within this chapter.  

Chapter three looks at the existing accident types, and we present the reasons for choosing 

one specific accident type on which we test and run the pattern recognition approach. 

Moreover, we discuss the characteristics of the existing road traffic accident database and 

point out the reasons for the data reprocessing task. This reprocessing task leads to 

developing a binary database that includes more than 150 accident-related variables. Next, we 

categorise these accident-related variables into the following scheme: driver-related variables, 

vehicle-related variables, roadway-related variables, and situation-related variables. The third 

chapter concludes with the definition of the dependent variable. 

After the three introductory chapters, we jump into analysis part I in chapter four. This chapter 

presents each accident-related characteristic in detail with the help of descriptive statistics. 

First, we show how often a variable occurs among all accidents (severe and fatal accidents and 
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accidents with slight injuries). Second, we only show how often a variable occurs among severe 

and fatal accidents. Based on the contingencies, we calculate the probability for a severe or 

fatal road accident given the respective accident-related variable. 

Additionally, we apply Fisher's exact test to determine a possible relationship between an 

accident-related variable and the dependent variable (severe and fatal road accidents). 

Fisher's exact test shows whether there is a significant relationship between the two variables 

and outputs the Phi coefficient to determine the strength of the relationship. Also, we generate 

a robust parameter estimation (95% confidence intervals showing the likelihood of a variable 

and a severe or fatal accident to occur) by applying a bootstrap resampling method on the 

newly established accident database. Moreover, we calculate a so-called maximum 

combination value as the first value towards blackpattern detection. This value tells us how 

often a specific variable co-occurs with (an)other accident-related variable(s). 

Chapter five uses binomial logistic regression to estimate each variable's impact on severe 

road traffic accidents with an odds ratio (i.e., the strength of the relationship between an 

accident-related variable and the target variable severe casualties (i.e., severe or fatal 

accidents) compared to all observed variables). By knowing which variable appears to increase 

the risk of a severe road traffic accident, we can assess the overall impact of the detected 

blackpatterns. 

Furthermore, we grow decision trees using the CHAID-algorithm in chapter six. Decision trees 

generate a generalized tree-like structure of variable combinations that appear to increase the 

probability of a severe road traffic accident. At this point, binomial logistic regression and 

decision trees help us identify variables that aggravate an accident outcome and the respective 

degree of injury. However, since we are interested in gaining in-depth knowledge of recurring 

variable combinations (blackpatterns), we zoom deeper into the underlying data structures. 

Consequently, we apply an explorative Bayesian network paradigm in chapter seven. Also, we 

apply a developed pattern detection method based on the frequency of variable combinations 

and joint probabilities (PATTERMAX-method) in chapter eight. 

In chapter nine, the pattern recognition process concludes with a statistical evaluation of 

whether the detected blackpatterns show a significant relationship with the target variable 

severe casualties. Like the beginning, so the end, and we calculate Fisher's exact test and the 

Phi coefficient. 

To conclude, we highlight the most aggravating accident-related variables and blackpatterns 

in chapter ten. Also, we compare the applied pattern recognition methods. The discussion 

highlights the advantages and the limitations of the PATTERMAX-method combined with 

binomial logistic regression to gain in-depth knowledge about accident circumstances. The 

combined application of both methods enables a precise detection and comparison of 

blackpatterns. For example, do accident patterns among female drivers differ from accident 

patterns among male drivers? Do accident patterns on regional roads within an 80 km/h speed 
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limit differ from those on a 100 km/h speed limit? Additionally, the combined approach 

enables the assessment of the detected blackpatterns with the help of an odds ratio. 

Within the research outlook, we propose to expand the PATTERMAX-approach in combination 

with binomial logistic regression on other accident types. The newly established accident 

database might also serve as a reliable source for accident prediction. The estimated 95% 

confidence intervals may represent input variables for a prediction model. 

 

1.8 Scientific classification of the thesis 

This thesis represents a curiosity-driven, heuristic research approach to investigate patterns 

underlying historical road traffic accidents. 

First, contingency tables, conditional and joint probability, Fisher's exact test, and binomial 

logistic regression determine an accident-related variable's impact on severe road traffic 

accidents (i.e., accidents with fatal or severe injury). Second, we proceed with an investigation 

of recurring combinations of accident-related variables (i.e., blackpatterns). We apply a 

probabilistic Bayesian approach, decision trees, and a developed pattern recognition method 

(the PATTERMAX-method). 

We do not make any assumptions on a variable's impact on severe road traffic accidents in 

advance. Correlations and variable combinations are the results of objective analysis. Thus, the 

proposed methods represent a quantitative approach to disentangle variable relationships 

and to discover the data's inherent patterns. 

Because of the assumption underlying this thesis that road traffic accidents do not represent 

monocausal events, the pattern recognition approach is related to the so-called INUS 

condition. INUS stands for 'insufficient, but necessary part of an unnecessary but sufficient' 

condition. The INUS condition explains the concept of cause in more detail by considering 

potential conditions leading to the impact under investigation. Thus, discarding mono-

causality leads to the embedment of this thesis into John Mackie's (Mackie, 1965) construct of 

multi-causality, which he describes with the INUS condition. 

As shown in chapter 1.3, official accident causes include only one clear accident condition (e.g., 

'speeding'). Official road traffic accident statistics in Austria do not consider other potential 

conditions going along with it. It is, of course, impossible to depict all possible accidents 

conditions but the official road traffic accident database in Austria provides a source to identify 

co-occurring accident-related variables (blackpatterns). These variables are essential 

information when trying to understand accident conditions and causes, respectively, in more 

detail. 
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With the help of the INUS condition, we try to accommodate the notion of multiple causes and 

effects of an event. We now illustrate the INUS condition with a specific accident-related 

example. Let us assume that a severe road traffic accident is caused by 'speeding' but actually 

caused by 'speeding' and 'wet road surface'. According to the INUS condition, the statement 

'Excessive speed was the cause of the accident.' 

calls for the following interpretation: 

• Excessive speed is not a sufficient part of the condition' excessive speed and wet 

road surface' because excessive speed only does not necessarily fulfil the condition 

• Excessive speed, however, is a necessary part of the condition' excessive speed and 

wet road surface' because, without it, the condition cannot be fulfilled 

• 'Excessive speed and wet road surface' is a non-necessary condition for a severe road 

traffic accident because other conditions can replace it (e.g., no safety belt applied 

and impairment by alcohol) 

• 'Excessive speed and wet road surface' is a sufficient condition for a severe road 

traffic accident because it inevitably leads to a fatal or severe accident 

It is possible to expand this example with more influencing factors (especially potential factors 

such as 'distraction', 'airbag not deployed', 'fatigue', 'probationary driving licence' etc.). We 

can conclude that, according to Mackie, a cause only represents a partial condition for one or 

more effects to occur. 

This thesis, by no means, covers all possible effects. Still, it covers evidence-based and 

recorded effects from the road traffic accident database and thus significant effects for 

detecting accident-related patterns. 

  



24 
 

 

2. Characteristics of and pattern recognition methods 

for road traffic accident data 

 

This thesis analyses geocoded road traffic accident records from Statistics Austria. As 

illustrated in figure 2, the systematic collection of road traffic accident data began in 1996. 

Since the accident data management (UDM) introduction in 2012, accident records have been 

available with geographic coordinates. Therefore, the investigation period of this thesis starts 

with the year 2012 and ends in 2019. The investigation period deliberately excludes the year 

2020. The inclusion of 2020 might lead to distortions in the pattern discovery process as traffic 

performance and accident numbers may deviate from the years before due to the corona crisis. 

Between 2012 and 2019, 303.700 (aggregated by the UDM-accident identification field 

"REFUND") road traffic accidents occurred on the Austrian road network. 110.666 road 

accidents occurred outside built-up areas, while 193.034 accidents occurred within built-up 

areas. 

The road traffic accident records include variables describing each accident in detail, such as 

accident type, time and place of the accident, the alleged cause of the accident, ambient 

factors, driver characteristics, degree of injury, driver impairment, driver behaviour, road 

characteristics, and environmental conditions.  

The major target of this thesis is to reveal recurring patterns underlying recorded road traffic 

accidents. A blackpattern is a recurring combination of co-occurring variables for a severe or 

fatal road traffic accident. 

 

2.1 Characteristics of road traffic accident data 

Road traffic accident data have specific characteristics, making it challenging to apply classical 

statistical methods to analyse them appropriately. These specific characteristics are: 

• uncertainty, 

• noise and bias, 

• rare events, 

• heterogeneity, and 

• over-dispersion 
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Uncertainty 

Road traffic accidents are uncertain and their analysis requires knowledge of the factors that 

influence them. For example, within the Austrian road traffic accident data, the specific location 

of an accident is subject to uncertainty. Recording errors can occur in the location data 

between the specification of the WGS 84 coordinates and the street kilometre data.  The 

reason for the discrepancies arises from survey modalities.  The WGS 84 coordinates of the 

accident sites result from marking the accident site on an electronic map. At the same time, the 

road mileage data are collected separately based on the physical, local kilometre marker. The 

more precisely the accident localisation is on the map, the better the match with the road 

kilometre. 

Further uncertainty sources may involve input or reading errors while recording the accident. 

The variables are primarily categorical in the accident record sheet. Since humans are involved 

in recording the accidents on site and post-processing the recordings, typos, missing values, 

and noisy values may arise. Although several algorithms exist to detect and correct noisy data, 

most of these algorithms deal with continuous numeric data. Detecting and correcting 

erroneous values in categorical datasets remains a challenging task (Ayman & Ali, 2019, p. 27).  

Contingency tables are a remedy here, as we will see in chapter 4. 

 

Noise and Bias 

The simplest example of a biased sample arises directly from the quality of the accident data 

itself, namely the problem of underreporting in official accident statistics. That is, accidents 

with no or less severe injuries do not show up in the accident databases because these 

accidents are simply not recorded by the police. Most accident analysis models include 

accidents that result in human suffering. In contrast, accidents that result in property damage 

are neglected—this problem of underreporting leads to a biased sample of traffic accident 

records. 

In this context, it is essential to address the evaluation bias. For example, the assessment of the 

alleged accident cause represents a subjective assessment by the police officer who fills out 

the accident data sheet on site. Depending on how differently police officers may be trained 

on accident surveys, there will always exist a so-called evaluation bias going along with road 

traffic accident records. For this reason, we neglect the officially designated accident causes 

and exclusively focus on all recorded circumstances of the accident (regardless of which major 

accident cause was recorded by the police officer). 
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Rare Events 

Road traffic accidents records indicate the time and location of the accident. These parameters, 

for example, enable the calculation of the probability that a fatal road traffic accident will 

happen on a specific road segment within a specific period (e.g., daily, within seven days etc.). 

Since fatal road traffic accidents are rare events, we assume that the number of fatal road traffic 

accidents occurring on a specific road segment follows a Poisson distribution with a specific 

rate of fatal road traffic accidents per day. This specific rate (expectation value) is a constant 

within the Poisson distribution. However, we cannot expect this expectation value to be 

constant. This fact is a problematic restriction going along with Poisson distributed data. Thus, 

there exist approaches to vary the expectation value, as we will see in the section describing 

over-dispersion. 

 

Heterogeneity 

Another challenge in the analysis of road traffic accidents is the problem of heterogeneity in 

the data. Road traffic accident data do not represent homogenous data. The accidents vary in 

different variable combinations, making it difficult to detect patterns without computational 

support. The general problem of heterogeneity is that relationships among accident-related 

variables remain hidden (for example, co-occurring variables with a specific accident cause 

may not be significant in the entire road traffic accident dataset). The impact of accident-

related variables depends on the co-occurrence of variables and thus on the accident 

conditions (for example, accident-related variables may be different for male or female 

drivers). Several studies apply clustering methods to reduce heterogeneity within road traffic 

accident data. However, a cluster always represents a generalized group with information loss 

regarding recorded variable combinations. In contrast to clustering, this thesis detailly detects 

co-occurring variables (blackpatterns) among road traffic accidents and counts how often 

these patterns occur in the period under review (2012-2019). 

 

Over-dispersion 

In general, we consider road traffic accident data as Poisson distributed. A data set exhibits 

over-dispersion when the variance is more than the mean. Poisson or binomial logistic 

regression represent commonly applied methods to quantify the relationship between 

accident-related variables and severe or fatal accidents. When modelling data with Poisson 

regression models, over-dispersion will almost always be the case. In Poisson regression 

models, the dispersion parameter ∅ is a constant. That is why Poisson regression is not the 

most reliable method for modelling road traffic accidents. As we will see later (chapter 2.2), an 

algorithm called negative binomial regression varies the dispersion parameter ∅ according to 

a Gamma distribution. The resulting dispersion parameter ∅ is a random variable, so negative 

binomial regression includes a dispersion parameter that addresses the unobserved 

heterogeneity in the accident data (Nwankwo & Godwin, 2015, p. 227). 
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2.2 Pattern recognition methods for road traffic accident data 

Within the ongoing development of machine learning and advanced modelling approaches 

(algorithms and techniques to analyse, categorize, and predict), the analysis of road traffic 

accidents becomes an exciting field of research for road traffic safety. The target is to 

determine accident-related variables that contribute to fatal and severe road traffic accidents 

and to predict road traffic accidents (Gutierrez-Osorio & Pedraza, 2020). Hence, we experience 

an increase in methodological complexity in road traffic accident analysis. However, the 

requirement for science is to keep in mind the general applicability of the developed methods. 

This chapter presents applicable procedures for analysing road traffic accident data. 

On the aspect to  

• deeply analyse road traffic accident data,  

• to characterize accident-related variables, 

• to describe their impact on the degree of injury and 

• to discover unrevealed patterns and driving behaviours 

the following algorithms and computational modelling approaches evolve in the field of road 

traffic accident analysis: 

• classification, 

• regression, 

• clustering, and 

• association rules. 

These approaches apply to the field of machine learning. Machine learning consists of two 

categories: supervised and unsupervised machine learning. As shown in figure 7, classification 

and regression belong to supervised machine learning, while clustering and association rules 

belong to unsupervised machine learning.  
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Figure 7: Pattern recognition methods.  

Source: Author's compilation based on Cui, Ling, and Zhu (2018). 

 

 

Table 4 illustrates the differences between supervised and unsupervised machine learning. 

supervised machine learning unsupervised machine learning 

The algorithm learns from labelled data to 

predict the outcome from the input data. 

It is the technique of using algorithms where 

there is no outcome variable to predict or 

classify. 

The goal is to identify the relationship between 

the input and output variables and categorise 

new, unlabelled data. 

Unsupervised data mining aims to find patterns 

in a dataset based on the relationship between 

data points themselves. 

The methods for supervised machine learning 

include regression and classification. 

The methods for unsupervised machine learning 

include clustering and association. 

Supervised data mining tends to be highly 

scalable, and it is generally fast. 

Unsupervised methods often raise several 

scalability issues, and they are relatively slow. 

 
Table 4: Supervised vs unsupervised machine learning.  

Source: Author's compilation based on Al Musawi (2018). 

 

Various algorithms exist for pattern detection in road traffic accident data among the 

approaches mentioned above. As a result of the literature survey, figure 8 presents an overview 

of algorithms appropriate for road traffic accident analysis. 
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Figure 8: Pattern recognition methods in traffic accident analysis.  

 

We will now have a detailed look at the four pattern recognition approaches for road traffic 

accidents: clustering, regression, classification, and association rules. 
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Clustering 

Clustering leads to the partitioning of data into clusters. Objects with the most similarities 

remain in a group and have fewer or no similarities with the objects of another group. 

Clustering works with unlabelled data and represents an unsupervised data mining method. 

The following conditions define a cluster: 

The m-Clustering of X = x1, x2, …, xn is called the subdivision of X into m Cluster C1, …, Cm, so 

that 

Ci	≠	∅,	i	=	1,	…	,	m	

∪!"#
$ 	Ci	=	X	

Ci	∩	Cj	=	∅,	i	≠	j,	i,	j	=	1,	…,	m	

These criteria mean that all clusters have at least one data point. No cluster is empty. The union 

of all clusters then corresponds back to the data. The intersection of Ci and Cj is always empty. 

That means differently formulated: Each data point from X is assigned to exactly one cluster, 

not two or more clusters (in the case of hard clustering). (Kovera, 2017) 

The vectors xi of cluster Ci are more similar to each other than the vectors in the other clusters. 

That kind of clustering is called "hard" or "crisp" (opposite = fuzzy or soft). Hard clustering 

states that every element is assigned to only one cluster (e.g., k-means clustering). In contrast, 

soft clustering states that one element is assigned to all available clusters with a different 

membership degree for each cluster (e.g., fuzzy c-means clustering). (Wiharto & Suryani, 2020, 

p. 43) 

Figure 9 shows the principles of hard and soft clustering. 

 

Figure 9: Comparison of hard and soft clustering. 
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Similarity and dissimilarity measures are core components of clustering. The distance measure 

tells us how similar or dissimilar two feature vectors or two subsets of X are.  

 

Dissimilarity measure d: 

A dissimilarity d on X is a function d: X × X → ℝ, where ∃ d0 ∈ ℝ: 

-∞ < d0 ≤ d (x, y) < +∞, ∀ x, y ∈ X 

d0 is the smallest dissimilarity measure 

The dissimilarity measure d is a function representing feature vectors as real numbers.  The 

dissimilarity of x and y (or the dissimilarity of two feature vectors) is bigger than d0, and d0 is the 

smallest dissimilarity measure. It may be that x and y account for precisely this smallest 

dissimilarity. In any case, the smallest dissimilarity is above minus infinity and below plus 

infinity. Ciaburro (2017) 

 

Similarity measure s: 

A similarity measure 𝑠 on 𝑋 is a function 𝑠 ∶ 𝑋 × 𝑋 → ℝ, where ∃ 𝑠0 ∈ ℝ∶  

−∞ <𝑠 𝒙, 𝒚 ≤ 𝑠0 <+ ∞, ∀𝒙, 𝒚 ∈ 𝑋 

𝑠0 is the biggest measure of similarity 

The similarity measure s is a function representing feature vectors as real numbers. The 

similarity of x and y is above minus infinity, and it is smaller than s0, which applies to the biggest 

measure of similarity. The biggest similarity of x and y is below plus infinity. 

Both conditions, the smallest measure of dissimilarity or the biggest measure of similarity, state 

that two feature vectors are similar. Thus, the similarity measure and dissimilarity measure 

enable the calculation of the distance between vector x and y. Ciaburro (2017) 
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Generally, clustering methods comprise hierarchical clustering and non-hierarchical clustering 

methods: hierarchical clustering and non-hierarchical clustering. 

Hierarchical clustering creates homogenous groups of N objects based on distance. A 

stepwise procedure uses a series of predefined characteristics (i.e., an agglomerative 

algorithm using successive mergers or a divisive algorithm using successive division). It 

constructs a hierarchy or treelike structure to depict the cluster information. In contrast to 

hierarchical clustering, non-hierarchical clustering does not perform a treelike construction 

process but partitions a set of N objects into K distinct groups based on distance. Once the 

number of clusters is specified (known a priori or estimated as part of the procedure), non-

hierarchical clustering assigns the objects into clusters. 

The k-means cluster algorithm is commonly applied in road traffic accident analysis. It is a non-

hierarchical clustering method and foresees the following steps: 

• partition the N objects into K distinct clusters C1, …, Ck 

• for each i = 1, …, N: 

o assign object xi to cluster Ck that has the closest centroid (mean) 

o update cluster centroids if xi is reassigned to the new cluster (Helwig, 2017) 

Kumar & Toshniwal (2017) use the k-means cluster algorithm to identify and categorize 

accident-prone locations by accident frequency (high-frequency, moderate-frequency, and 

low-frequency). Afterwards, they use association rules (see below) to characterize the identified 

accident locations. Saharan & Baragona (2017) use the k-means cluster algorithm to identify 

the factors associated with accidents of different levels of severity in Christchurch, New 

Zealand. The applied clustering approach provides new insights into the relationship between 

accident-related variables and accident severity. In their study, 'speed greater than 60 km/h' 

and 'did not see other people until too late' represent the two main variables contributing to 

fatal road accidents. Mauro, De Luca, and Dell'Acqua (2013) apply cluster analysis to 

aggregate accidents based on similarities. For each cluster, they identify one 'cluster 

representative' accident and a 'hazard index' to describe the danger level of each cluster. The 

generated clusters provide the basis for developing an accident prediction model. Assi, 

Rahman, Mansoor, and Ratrout (2020) use fuzzy clustering for road traffic accident analysis. 

They developed four different machine learning models to predict injury severity with 15 

accident-related parameters: neural networks, support vector machines, fuzzy c-means 

clustering based on neural networks and fuzzy c-means clustering based on support vector 

machines. They conclude that fuzzy C-means clustering and support vector machines show a 

higher injury severity prediction accuracy, sensitivity, precision, and harmonic mean. 
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Regression 

Regression models analyse the relationship between the number of (severe and fatal) road 

traffic accidents and influencing factors (x-variables) such as driver, vehicle-, roadway-, or 

situation-related attributes. The target variable (y-variable) often refers to fatal or severe road 

traffic accidents instead of the total number of accidents. Regression models are part of 

supervised machine learning. 

Conventional linear regression models are not suitable for analysing road traffic accidents 

since they require a continuous and normally distributed target variable with a constant 

variance. The target variable (e.g., fatal and severe road traffic accidents) usually represents a 

discrete and Poisson-distributed variable (or count variable) in road traffic accident analysis. 

The Poisson distribution represents a probability distribution to show how many times an event 

is likely to occur within a specified period. Thus, the most common regression models in road 

traffic accident modelling are Poisson regression, negative binomial regression (NBR), and 

Poisson zero-inflated negative binomial regression (NINB). Poisson regression is a good 

starting point for analysing count data. It represents a generalized linear model which assumes 

that the outcome variable is Poisson distributed: 

 

𝑃(𝑥) 	= 	
𝜆$	𝑒%&

𝑥!  

 

where: 

 x = 0, 1, 2, 3, … 

λ = mean number of occurrences in the interval 

e = Euler's constant 2.71828 

A Poisson distribution is parameterized by λ, which happens to be the mean and variance 

simultaneously. Figure 10 illustrates the Poisson distribution for λ=1, λ=5, and λ=9. 
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Figure 10: Poisson distribution for λ=1, λ=5, and λ=9. 

 

One restriction with Poisson distribution is that it may not precisely define the variability of 

counts because of its constant expectation value λ. As discussed in the previous chapter on the 

characteristics of road traffic accident data (chapter 2.1), over-dispersion may apply when 

analysing road traffic accidents. Thus, the occurrence of accidents in an interval might vary. In 

negative binomial regression, mean and variance are not equal. Thus, negative binomial 

regression is a Poisson distribution with an adapted parameter λ, where λ is not a fixed but a 

random variable following a Gamma distribution (Yang & Berdine, 2015). Therefore, negative 

binomial regression appears to be a more reliable approach to analyse road traffic accidents 

because of its ability to catch over-dispersion rather well. However, negative binomial 

regression is not suitable for modelling overabundance zeros.  Road traffic accident data 

include the presence of excess zero (as we will see in chapter 4). Suppose the count data 

exhibit over-dispersion and a substantial number of zeros. In that case, zero-inflated binomial 

Poisson regression is the model to choose because of its capability to model overabundance 

zeros. 

The research paper of Basu & Saha (2017) reviews regression models for highway accidents. 

They state that many researchers aim to develop statistical models for accident prediction. Yet, 

several models do not consider the heterogeneity and potential over-dispersion of road traffic 

accident data (i.e., more variability (statistical dispersion) in an observed dataset than in a 

statistical model). They emphasize the necessity to reflect on over- and under-dispersion when 

applying regression models for road traffic accident data. They substantiate that Poisson 

regression is inappropriate for predicting road traffic accidents as it cannot handle over-

dispersion in accident data. Ma & Yuan (2018) draw the same conclusion regarding the 
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applicability of Poisson regression on road traffic accident data. They compare Poisson 

regression, NBR, and NINB to describe the relationship between road traffic accidents and 

various predictor variables. They conclude that Poisson regression is not ideal as road traffic 

accident data show excessive dispersion. 

Additionally, Prasejito & Musa (2016) illustrate that NINB represents the fittest regression 

model for analysing road traffic accidents. Also, Getahun & Dejen (2020) show that zero-

inflated Poisson is preferable over the Poisson model. Aga, Woldemanuel, and Tadesse (2021) 

emphasize the necessity of applying negative binomial regression or zero-inflated negative 

binomial regression in the case of overabundance zeros.  

 

Association  

Association rule mining is an unsupervised machine learning method. It detects patterns in 

massive datasets by identifying co-occurring and correlated variables. Association rules 

identify if-then associations, with 'if' being an antecedent (i.e., an item within the data) and 

'then' being a consequent (i.e., an item found in combination with the antecedent). Three 

criteria go along with detecting if-then association rules: support, confidence, and lift.   

• Support identifies how often an item appears within the dataset 

• Confidence identifies the number of items for which the if-then associations apply 

• Lift compares the detected confidence with the expected confidence (how many 

times an if-then statement is expected to be true) 

Feng, Zheng, Ren, and Xi (2020), Weng, Zhu, Yan, and Liu (2016), Montella (2011), Das (2014), 

Gao, Pan, Yu, and Wang (2018), and Priya & Agalya (2018) apply the association rule approach 

to explore the characteristics and contributory factors for different accident types under 

different conditions. For example, Das (2014) explores patterns in road traffic accidents that 

happen under rainy conditions. 

 

  



36 
 

Classification 

Classification is a supervised data mining method that assigns unlabelled data to target classes 

or labels in a data collection. Standard classification methods in the context of road traffic 

accident analysis comprise  

• decision trees (DT), 

• neural networks (NN), 

• logistic regression (LR), 

• Bayesian networks (BN), and 

• support vector machines (SVM). 

Decision trees aim to generate the best possible tree structure from a known data set by 

creating rules to classify data. A decision tree represents a flowchart consisting of a root node, 

branches, internal nodes, and leaf nodes (see figure 11). 

 

 

Figure 11: Decision tree structure. 

 

Tree models with a discrete target variable represent classification trees, while decision trees 

with a continuous value represent regression trees. One well-known decision tree algorithm is 

CART (Classification and Regression Trees). CART represents a nonparametric model and an 

iterative method to grow a decision tree.  
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Starting from the root node (topmost node), each internal node carries out a test on a specific 

variable, and each branch represents the outcome of the test. In the end, each leaf node holds 

a class label. Thus, training the decision tree splits the data into two branches. Depending on 

the data in a node 

• the node becomes a leaf, and we classify it, or 

• a variable (or feature) divides the data into further branches and nodes. 

At each node to be split, the algorithm successively selects the criterion that most appropriately 

splits the data. Each decision output at a node is therefore called a split (i.e., splitting the 

training data). The number of branches (edges) starting from a node is often called the 

branching factor or ratio. It is possible to represent a decision tree as a binary decision tree 

(branching factor 𝐵 = 2), making it easier to train it. For example, CHAID- or CART-trees 

represent binary decision trees. 

The CHAID-algorithm (Chi-square automatic interaction detection) is the pioneer among 

decision tree algorithms. Gordon V. Kass defined it in 1980. Based on the CHAID algorithm, 

further decision algorithms such as CART, ID3, C4.5, or random forest were developed. Figure 

12 represents an exemplary CART consisting of this thesis's dataset on road traffic accidents. 

 

 

Figure 12: Illustration of a CART. 
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In this thesis, we illustrate the functionality of the CHAID algorithm and apply it to the road 

traffic accident dataset in chapter 6. 

Several studies use the decision tree algorithm to study the impact of accident-related 

variables on the degree of injury. (Da Cruz Figueira, Pitombo, Meira, De Oliveira, and Camargo 

Larocca (2017) applied CART to identify probable accident causes and accident types for 

severe road traffic accidents on the highway BR-116 in Brazil. On the other hand, Zhou, Lu, 

Zheng, Tolliver, and Keramati (2020) point out the improved random forest accident 

forecasting performance because of bootstrap characteristics. 

Neural networks are algorithms that replicate the human brain's information processing, 

information storage, and learning process. A neural network is an abstracted model of 

connected artificial neurons. It allows complex tasks from statistics, computer science and 

economics to be solved by computers.  Neural networks are a very active field of research and 

are considered the basis of artificial intelligence and the central element of deep learning. They 

can interpret various data sources such as images, sounds, texts, tables, or time series by 

extracting information or patterns out of unknown data. In this way, they generate data-driven 

predictions. Neural networks vary in complexity but essentially exhibit the structures of 

directed graphs. We speak of deep learning if a neural network has deep network structures. 

Also, different types of neural networks exist, such as convolutional neural networks, recurrent 

neural networks, artificial neural networks, or modular neural networks. (Pan, 2016) 

García de Soto, Bumbacher, Deublein, and Adey (2018) created an accident prediction model 

based on artificial neural networks for Swiss national roads from 2009 and 2021. Generally, 

they promote the applicability of artificial neural networks for road traffic accident prediction 

but point out the complexity in training the network because of overabundance zeros. As we 

know from regression, the issue of predicting the existence of zero is a core challenge in road 

traffic accident prediction. Pradhan & Sameen (2019, p. 102) also refer to this challenge when 

working with neural networks in road traffic accident analysis. They also provide a research 

review on neural networks for traffic accident prediction. They state that neural networks are 

suitable for handling nonlinear data. Still, they do not conclude with further specifications why 

the neural network represents a more suitable approach for road traffic accident prediction 

than other models.  

Logistic regression is a form of regression analysis that predicts a nominal-scale categorical 

criterion. Logistic regression applies whenever the dependent variable has only a few equally 

significant values.  If the dependent variable has only two values in the logistic regression, we 

apply binary logistic regression (also called binomial logistic regression). We apply 

multinomial logistic regression if the criterion has more than two categories. Unlike linear 

regression, logistic regression does not produce specific values for the dependent variable. 

Instead, it estimates how likely an item falls into one of the dependent variable's categories. 

Figure 13 illustrates the differences between linear regression and logistic regression. 
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Figure 13: Linear and logistic regression. 

 

The following formula defines the binary logistic regression model: 

𝑝	(𝑦	 = 	1) 	= 	
𝑒'!(	'"	×	$"

1 +	𝑒'!(	'"	×	$" 

where: 

 p (y = 1) … probability for y = 1 

 e… Euler’s number (basis of the natural algorithm) 

x… predictor value 

β0 and β1 … regression coefficients (the maximum likelihood method defines the 

coefficients)  

Logistic regression represents an actively applied method in road traffic accident prediction as 

it investigates the relationship between accidents and contributing factors. Logistic regression 

provides insights into the parameter estimates, standard errors, significance, and the overall 

fitness of the model through an odds ratio (i.e., changes in the ratio of probabilities).  

Alavi et al., (2017) apply logistic regression to explore the relationship between personality, 

driving behaviour, mental disorders, and road traffic accidents. Ahmed (2017) uses logistic 

regression to find essential variables in road traffic accidents. He detects three variables 

showing a significant association with fatal road traffic accidents: speed, car type, and location. 

Zong, Xu, and Zhang (2013) study argue that Bayesian networks (see chapter 7) show better 

performance in predicting accident severity than regression models. 
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While logistic regression appears to be a suitable method to estimate the influence of selected 

variables on severe road traffic accidents, it is not capable of detecting co-occurring variables 

(i.e., accident blackpatterns) among the data. Consequently, a mixed approach involving a 

pattern detection method and binary logistic regression might be a practical tool to investigate 

and evaluate blackpatterns. 

Support vector machines represent a supervised learning method for classification and 

regression tasks. Figure 14 represents the principle of support vector machines. Support 

vector machines draw a decision boundary (hyperplane) to separate classes of data points. The 

objective is to define a hyperplane with a maximum margin, which means the maximum 

distance between data points of the classes. Thus, identifying the optimal position and 

orientation of the hyperplane is the crucial task of support vector machines. The decision 

boundary (hyperplane) is defined by the objects closest to it, also called support vectors. 

Vectors further away from the boundary are not essential for the calculation. Therefore, the 

algorithm does not load these vectors into the main memory, making support vector machines 

memory efficient and competitive to neural networks. (Schölkopf & Smola, 2002) 

Yu, Wang, Zheng, and Wang (2013) establish a pattern recognition model for urban road traffic 

conditions. They classify transportation condition patterns in terms of blocking flow, crowded 

flow, steady flow, and unhindered flow. They conclude that support vector machines using 

kernel function separate different patterns from traffic flows with high classification accuracy. 

 



41 
 

 

Figure 14: Principle of support vector machines. 

 

The naïve Bayes classifier is a probabilistic classification algorithm, among others, to determine 

class probabilities based on observations. The classifier builds upon the Bayesian theorem: it 

calculates the probability of variable A happening, given that variable B has occurred. 

Therefore, it is a suitable method to calculate the probability of a specific combination of 

variables to occur (see figure 15). The model assumes that the presence of one variable does 

not affect another variable. The naïve Bayes classifier is a straightforward but powerful machine 

learning method. Chapter 7 provides a more detailed introduction to the naïve Bayes classifier. 
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Figure 15: Bayesian network example. 

 

Several studies use a combined methods approach for road traffic accident analysis and 

machine learning. A comparative analysis of the illustrated machine learning algorithms in 

traffic accident analysis is conducted by Chong, Abraham, and Paprzycki (2005). They conduct 

a comparison of four machine learning paradigms for accident pattern detection: neural 

networks, support vector machines, decision trees and a hybrid model (decision tree & neural 

network). For severe casualties, the hybrid model performed best.  

Krishnaveni & Hemalath (2011) apply naïve Bayes classifier, random forest tree classifier, 

decision tree classifier, and a couple of other algorithms for classifying the level of injury. They 

conclude that the random forest tree classifier outperforms the other classification algorithms.  

Almamook, Keneth, Abdulbaset, and Alkasisbeh (2019) apply machine learning algorithms 

(AdaBoost (a statistical classification algorithm), logistic regression, naïve Bayes, and random 

forests) for predicting the accident severity (level of injury). The results show that the random 

forest classifier shows the best performance.  Labib, Rifat, Hossain, Das, and  Nawrine (2019) 

analyse road traffic accidents more deeply to determine their intensity by machine learning 

approaches in Bangladesh. Their analyses make use of the decision tree classifier and k-

nearest neighbour. Lee, Yoon, Kwon, and Lee (2019) test the fandom forest classifier, artificial 

neural networks, and the decision tree classifier for analysing road geometry data, 

precipitation data, and traffic accident data over nine years. The proposed random forest 
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model shows the best results. Hayatu, Abdullahi, Ahmad, Ali, and Mohammed (2020) conduct 

a comparative analysis using four classification algorithms: random forest, decision tree, 

support vector machine, and k-nearest neighbour with random forest outperforming the other 

models. Shanthi & Ramani (2012) compare the performance of the classification algorithms 

naïve Bayes and random tree. The results reveal that the random tree classifier outperformed 

the individual approaches.  

To sum up, the presented research focuses on the implementation and comparative 

investigation of multiple algorithms such as neural networks, support vector machines, 

decision trees, random forests, and hybrid models (e.g., decision tree & neural network). The 

targets are to describe the impact of accident-related variables on injury severity and create 

accident prediction models. Overall, the results show that decision trees such as random 

forests generate reliable results to predict accident severity. At this point, it is important to 

emphasize once more that this thesis does not address accident prediction. It intends to 

disentangle variable relationships and discover the accident data’s inherent patterns and their 

probabilities and significance among severe and fatal road traffic accidents. 
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3. Data preparation for pattern recognition 

 

Since road traffic accidents vary in type (e.g., single-vehicle accidents versus multiple-vehicle 

accidents) and consequently in structure, establishing a pattern recognition method for road 

accident records requires a suitable sample of accidents records. Also, the original data 

structure within the Austrian road traffic accident database (UDM) partly prevents an individual 

analysis of each accident-related variable. Therefore, processing the data is necessary to 

extract each variable into one column and prepare the pattern recognition process. The 

following subchapters explain both steps, the sample extraction and the required data 

processing procedure. 

 

3.1 Accident types 

In Austria, the typification of road traffic accidents comprises ten accident types, as shown in  

table 5. This thesis exclusively uses type 0 ‘Unfälle mit nur einem Beteiligten’, which refers to 

single-vehicle accidents with a single occupation.  

 

Main accident type Description (German) 

0 Unfälle mit nur einem Beteiligten (Abkommen, Auffahren auf Hindernisse u.a.) 

1 Unfälle im Richtungsverkehr (Streifen, Auffahren u.a.) 

2 Unfälle im Begegnungsverkehr (Frontalkollisionen) 

3 Unfälle beim Abbiegen und Umkehren – richtungsgleich (Rechtsabbieger, Linksabbieger) 

4 Unfälle beim Abbiegen und Umkehren – entgegengesetzte Richtung 

5 Rechtwinkelige Kollisionen auf Kreuzungen beim Queren (geradeausfahrende Fahrzeuge) 

6 Rechtwinkelige Kollisionen auf Kreuzungen beim Einbiegen 

7 Unfälle mit haltenden und parkenden Fahrzeugen 

8 Fußgängerunfälle (von rechts und links, auf Kreuzungen und in Straßenzügen) 

9 
Tierunfälle, Eisenbahnunfälle, Unfälle auf Parkplatz-, Tankstellen-Haus- oder Grundstücks- 

Ein oder Aus-fahrten, Kollision mit querenden Radfahrern 

 
Table 5: Typification of road traffic accidents in Austria. Source: RVS 02.02.21.  
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3.2 Extraction of an appropriate road traffic accident sample 

The selected accident type is of particular interest because it corresponds to one line within 

the road traffic accident database. The other accident types include multiple vehicles, 

passengers, and other road users (such as pedestrians or cyclists). Therefore, they span several 

lines within the road traffic accident database. In this case, extracting the drivers and involved 

vehicles and people becomes necessary, making the pattern recognition process more 

complex. Thus, we start with the most appropriate sample to test and evaluate the proposed 

pattern recognition methods, accident type 0. If the developed method proves to be suitable 

for pattern recognition with road traffic accident data, we will subsequently expand it towards 

other accident types. 

The road traffic accident records of Statistics Austria consist of road traffic accidents with 

personal injury. Thus, this thesis investigates road traffic accidents resulting in personal injury. 

The analysis does not include accidents resulting in property damage. When analysing road 

traffic accident data, it is essential to consider one additional component: the spatial 

categorisation of where the accident occurs. Within the road traffic accident database, the 

spatial categorisation foresees the division of accidents into accidents occurring within the 

built-up area and accidents occurring outside the built-up area. The accident sample in this 

thesis will focus on single-vehicle accidents with a single occupation that occurred outside the 

built-up area between 2012-2019.  

The extracted sample is defined as follows: 

• Based on the road traffic accident records of Statistics Austria, this thesis investigates 

single-vehicle accidents with single occupation and personal injury that occurred 

outside the built-up area between 2012-2019 (n=20.293). 

 

• Between 2012 and 2019, 303.700 (based on the field ‘REFOUID’ within the UDM 

dataset) road traffic accidents occurred on the Austrian road network. 110.666 road 

accidents occurred outside built-up areas, while 193.034 accidents occurred within 

built-up areas. 

 

• The chosen sample amounts to 7 % of all road traffic accidents with a personal injury 

in Austria between 2012-2019 (n=303.700). Within the period under review, 110.666 

accidents with personal injury occurred outside the built-up area, of which the 

extracted sample comprises 18 %. 

 

Figure 16 shows the development of road traffic accidents in Austria from 2012 to 2019 and 

the number of accidents corresponding to the chosen accident sample.  
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Figure 16: Development of road traffic accidents in Austria from 2012-2019.  
Source: Author’s compilation based on Statistics Austria, UDM. 

 

 

Table 6 provides a more detailed picture of the development of fatal road traffic accidents on 

an annual basis. From 2012 to 2019, the investigated sample comprised 13 to 18 % of annual 

fatal road traffic accidents occurring outside the built-up area. As we will see later, this thesis 

focuses on investigating severe road traffic accidents (i.e., accidents resulting in severe injuries 

and fatal accidents). The target is to identify and quantify the impact of accident-related 

variables on severe and fatal road traffic accidents. 
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Year 

Fatalities 
within built-up 

area 
n=940 

Fatalities 
outside built-up 

area 
n=2.626 

Fatalities 
outside built-up area 

(sample) 
n=404 

Fatalities 
total 

n=3.566 

2012 151 380 67 (18%) 531 

2013 115 340 53 (16%) 455 

2014 123 307 45 (15%) 430 

2015 128 351 61 (17%) 479 

2016 110 322 50 (16%) 432 

2017 107 307 48 (16%) 414 

2018 102 307 38 (12%) 409 

2019 104 312 42 (13%) 416 

 
 

Table 6: Development of fatal road traffic accidents in Austria.  
Source: Author’s compilation based on Statistics Austria, UDM. 

 

The chosen sample is suitable for developing a pattern recognition method of road traffic 

accidents for multiple reasons. First and foremost, each accident record corresponds to one 

single line in the accident database. After testing and evaluating the pattern recognition 

method on this sample, the next step foresees the expansion of the proposed methods on 

additional accident types. 

 

3.3 Creation of a binary road traffic accident database 

One cell often contains multiple variable characteristics in the original road traffic accident 

records (UDM), making it difficult to analyse one single variable independently. Thus, recoding 

the accident records into a binary scheme is necessary for this thesis. Subsequently, each 

accident-related characteristic (more than 150) becomes an individual column. 

 

Table 7 represents an excerpt of the original data structure for one variable and its 

characteristics (left side of the table). The table also shows the resulting binary data structure 

after processing the data (right side of the table). In the example illustrated, the overall variable 

“B_MANOEV” (driving manoeuvres before the accident) shows multiple characteristics 

embedded in one cell, representing the original structure of the traffic accident database from 

Statistics Austria. The data processing strategy transfers each variable characteristic (i.e., 6, 21, 
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22,30, 33, 34, 146 of the attribute B_MANOEV) in an individual column. Thus, each 

characteristic is an individual column in the resulting accident database consisting of binary 

digits (0 = false; 1 = true) in each cell. The headlines of the columns indicate the meaning of 

the variable.  In the original database, it was necessary to consult an additional look-up table 

to identify the meaning of each accident-related characteristic. Consulting the look-up table 

could result in a very time-consuming and error-prone procedure (as you might associate the 

code with the wrong meaning since there exist more than 100 characteristics).  

The conversion of the original dataset into a binary format was conducted twice to ensure the 

correctness of the processed database. In addition, randomly selected characteristics from the 

original database were compared with the corresponding frequencies within the newly 

established road traffic accident database. The resulting processed database enables an 

individual and more precise evaluation of each accident-related characteristic. 

 

 

 6 21 22 30 33 34 146 

B_MANOEV 
Changing 

lanes 

Sudden 

breaking 

Skidding/ 

Drifting 
Overtaking 

Drifting 

left 

Drifting 

right 

Evasive 

manoeuvres 

21;22;34 0 1 1 0 0 1 0 

21;22;34 0 1 1 0 0 1 0 

22;30;33 0 0 1 1 1 0 0 

22;30;33 0 0 1 1 1 0 0 

22;30;34 0 0 1 1 0 1 0 

21;22;33 0 1 1 0 1 0 0 

21;22;33 0 1 1 0 1 0 0 

22;30;33 0 0 1 1 1 0 0 

21;22;33 0 1 1 0 1 0 0 

22;146 0 0 1 0 0 0 1 

22;33;146 0 0 1 0 1 1 0 

6;22;30;34 1 0 1 1 0 1 0 

21;22;34 0 1 1 0 0 1 0 

21;22;34 0 1 1 0 0 1 0 

ORIGINAL PROCESSED 

 
Table 7:  Data processing scheme. 
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After applying the binary coding procedure to the entire road traffic accident records, the 

resulting dataset consists of 158 variables (i.e., 158 columns). With the help of this procedure, 

each road traffic accident receives a sequence of zeros and ones. Consequently, identifying 

identical variable combinations among the entire accident datasets becomes relatively easy. 

The achieved data structure represents an important step towards successful pattern 

recognition among the historical road traffic accidents.  

Figure 17 shows the distribution of recorded characteristics per accident among the road 

traffic accident sample. The diagrams illustrate the overall distribution in Austria and the 

distribution within the Austrian federal states. The minimum number of recorded 

characteristics per accident is 14, and the maximum is 28. The median of recorded 

characteristics per accident in Austria is 21. The more characteristics the accidents include, the 

more complex the patterns recognition process becomes. The recorded characteristics within 

the binary traffic accident database represent sequences of zeros and ones for each accident. 

Thus, 0-1-sequences enable the identification of recurring patterns. 
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Figure 17: The number of recorded attributes per accident among the road traffic accident 
sample (n=20.293). The distribution is displayed for Austria and the Austrian federal states. 
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3.4 Creation of a categorisation scheme for 

accident-related variables 

After recoding all accident-related characteristics and setting up a binary accident database, 

the next step in data preparation foresees the assignment of each variable to one of the 

following categories: 

• driver-related variables (54 variables) 

• vehicle-related variables (32 variables) 

• roadway-related variables (50 variables) 

• situation-related variables (22 variables) 

Figure 18 illustrates the categorisation scheme for accident-related characteristics. 

 

 

Figure 18: Categorisation scheme for accident-related variables. 

 

Driver-related variables comprise personal data (i.e., sex, age class, nationality), driving 

experience (i.e., driving licence type and years of driving licence), impairments (i.e., alcohol, 

drugs, medicines, fatigue, health, excitement), driving manoeuvres before the accident, and 

safety settings (regarding seat belt). 
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Vehicle-related variables include engine power, kilometrage, vehicle colour and vehicle safety 

settings. Roadway-related variables include speed limit, road characteristics, traffic lights, road 

type, and road surface condition. Situation-related variables involve daytime, weekday, 

meteorological season, weather conditions, and light conditions. 

 

3.5 Definition of the dependent variable 

This thesis aims to quantify each accident-related variable's impact on the degree of injury. 

Within the original road traffic accident records of Statistics Austria, the degree of injury 

comprises the following categories: 

• minor injury 

• severe injury  

• death at the accident site 

• death within thirty days 

• death after more than thirty days 

In this thesis, the dependent variable shall combine severe injury and fatalities within the 

category severe casualties. Regarding the Austrian Road Safety Strategy 2021-2030 (KFV & 

FGM, 2021), it is equally important to reduce fatalities and the number of severe injuries. Also, 

both categories (severe and fatal accidents) entail high economic costs (as shown in table 1) 

and human suffering. These premises lead to the following reclassification of the degree of 

injury: 

• casualties: minor injury, severe injury, death at the accident site, death within thirty 

days, death after more than thirty days 

• severe casualties: severe injury, death at the accident site, death after thirty days, death 

after more than thirty years 

Thus, the degree of injury comprises only two categories within this thesis. The resulting 

dependent variable is severe casualties. Figure 19 illustrates the reclassification scheme for the 

degree of injury. This classification corresponds to the definition of ‘Schwerverunglückte’ and 

‘Verunglückte’ within the handbook of transportation system planning (Cerwenka, Hauger, 

Hörl, and Klamer, 2007, p.73). 
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Figure 19: Reclassification scheme for the degree of injury.  
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4. Road traffic accident data analysis I: 

Frequencies, Relationships, Probabilities, and 

Maximum Combinations Values 

 

In preparation for our pattern recognition process, we apply descriptive statistics to analyse 

the accident-related characteristics and their relationship with the target variable severe 

casualties.  

Based on the newly established binary road traffic accident database, it is possible to create 

contingency tables and to show how often an accident-related characteristic occurred in the 

observed period (2012-2019). Furthermore, we can illustrate the frequencies among the 

degree of injury (i.e., casualties and severe casualties). 

Contingency tables also allow the determination of relative frequencies, conditional 

probabilities and joint probabilities. Conditional and joint probabilities are essential 

parameters for the subsequent creation of Bayesian networks (see chapter 7). In the 

contingency tables, joint probability refers to the probability of an accident-related 

characteristic to occur, given a severe or fatal road traffic accident. 

Additionally, contingency tables help investigate whether an accident-related characteristic 

impacts the target variable severe casualties. Fisher’s exact test and the Phi coefficient examine 

the relationship between an accident-related characteristic and severe casualties. 

It is interesting how often an accident-related characteristic occurs in combination with another 

or multiple characteristics in pattern recognition. The maximum combination value determines 

how often one characteristic appears in the same combination with other characteristics. It 

provides the basis for the PATTERMAX-method. 

The following sections provide an exemplary illustration of the calculations mentioned above: 

• frequencies of accident-related characteristics: contingency tables 

• conditional and joint probability: Laplace's equation 

• relationship between an accident-related characteristic and severe casualties: Fisher's 

exact test and Phi coefficient 

• co-occurring characteristics: maximum combination value  
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4.1 Contingency tables 

Contingency tables (crosstabs) show each characteristic's frequency in the observation period 

(2012-2019) and its distribution among casualties and severe casualties (i.e., fatal or severe 

road traffic accidents). They provide the basis for 

• calculating conditional and joint probability for accident-related characteristics and 

• investigating the statistical relationship between accident-related characteristics and 

the target variable severe casualties. 

 

Table 8 illustrates the contingency table for sex and degree of injury (all casualties and severe 

casualties). As we can see, our sample consists of 20.293 casualties which comprise 3.430 

severe casualties. 

 

Sex 
C:  

Casualties 

SC:  

Severe Casualties 

M: Male 11.576 2.458 

F: Female 8.706 972 

U: Unknown 11 - 

Total 20.293 3.430 

 
Table 8: Contingency table of the road traffic accident dataset. n=20.293 (single-vehicle 
accidents with single occupation and personal injury occurring outside the built-up area on the 
Austrian road network between 2012-2019). 

 

When interpreting table 8, there are a few aspects to consider. This thesis does not include 

information on traffic performance. It analyses a historical sample of road traffic accident data. 

Thus, we cannot conclude from table 8 that male drivers are more likely to have an accident 

because we do not know the total number of male drivers driving a vehicle outside the built-

up area in Austria from 2012-2019. We can, however, conclude that single-vehicle accidents 

with personal injury and single occupation occurring outside the built-up area in Austria 

between 2012-2019 involve more male than female drivers. Among severe casualties, the 

share of male drivers is 21 % (2.458/11.576), and the share of female drivers is 11 %. However, 

when calculating the probability of a severe casualty to occur given male and female drivers, 

these percentages continue to fall apart. The following chapter will illustrate the concept of 

conditional and joint probability. 
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4.2 Conditional and joint probabilities 

Table 9 and table 10 illustrate the conditional and joint probability calculation scheme. First, 

we transfer the data from the contingency table (see table 8) in probability expressions (see  

table 9). 

Sex 
C:  

Casualties 

SC:  

Severe Casualties 

Sex ∩ SC 

[sex and severe casualties] 

M: Male P (M) PM (SC) P (M) x PM (SC) 

F: Female P (W) PW (SC) P (W) x PW (SC) 

U: Unknown P (U) PU (SC) P (U) x PU (SC) 

Total 1 P (SC)  

 
Table 9: Conditional (PM 	(SC)) and joint probability (P (M) x PM (SC)) – calculation scheme I. 

In the next step (see table 10), we calculate the conditional and joint probability for a severe 

casualty given an accident-related characteristic (in this case, sex: male, female, and unknown 

sex). 

 

Sex 

 

C:  

Casualties 
SC: 

Severe Casualties 
Sex ∩ SC 

[sex and severe casualties] 

M: Male P	(M)	=	
11.576
20.293

	=	0,570 PM 	(SC)=
2.458

11.576
= 0,212 

P (M) x PM (SC) = 

0,570 x 0,212 = 0,121 

F: Female P	(W)= 
8.706

20.293
=	0,429 PW (SC) = 

972
8.706

= 0,112 
P (W) x PU (SC) = 

0,429 x 0,112 = 0,048 

U: Unknown P (U)= 
11

20.293
= 0,000 - - 

Total 1 P	(SC)=
3.430

20.293
=	0,169  

Table 10: Conditional (PM 	(SC)) and joint probability (P (M) x PM (SC)) – calculation scheme II. 
n=20.293 single-vehicle accidents with single occupation and personal injury occurring 
outside the built-up area on the Austrian road network between 2012-2019 (3.431 are severe 
casualties). 

As we already know, among severe casualties, 21 % of male drivers and 11 % of female drivers 

were observed. This picture changes when calculating conditional or joint probabilities. The 

overall probability of a fatal or severe accident is 17 % (3.431/20.293). The conditional 

probability for a severe casualty given a male driver is 12 %. Given a female driver, it is 5 %, 

which, when added up, represents the value of 17 %. 
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4.3 Fisher's exact test and Phi coefficient 

Fisher’s exact test determines whether the observed values in a 2x2 field table are subject to 

randomness or not. The test compares two dichotomous variables by calculating the 

probability of obtaining the observed data in the 2x2 field table. (Mehta & Patel, 1983) 

In this thesis, Fisher's exact test evaluates the statistical relationship between accident-related 

characteristics and severe casualties. The test is suitable for 2x2 field tables with frequencies 

less than five, which is likely to occur among accident-related characteristics. We use the Phi 

coefficient to describe the strength of the determined statistical relationship. Figure 20 

represents the logical framework of Fisher’s exact test.  

 

 

Figure 20: Logical framework for Fisher’s exact test. 
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We will now go through the calculation scheme for Fisher’s exact test using a selected example 

(in this case, male drivers and the degree of injury). Table 11 illustrates the 2x2 field table 

containing the observed values from the accident sample. 

 

 No Severe Casualty Severe Casualty Row total 

Male drivers 9.118 (a) 2.458 (b) 11.576 (a + b) 

No male drivers 7.745 (c) 972 (d) 10.604 (c + d) 

Column total 16.863 (a + c) 3.430 (b + d) 20.293 (n = a + b + c + d) 

 
Table 11: 2x2 field contingency table containing observed values (Tobs). n=20.293 single-
vehicle accidents with single occupation and personal injury occurring outside the built-up 
area on the Austrian road network between 2012-2019 (3.431 are severe casualties). 

 

Fisher’s exact test calculates the probability of obtaining the observed 2x2 field table (pobs) with 

the help of the hypergeometric probability function: 

p	=	
(a+b)!	(c+d)!	(a+c)!	(b+d)!

n!a!	b!c!d!  

pobs	=
11.576!	10.604!	16.863!	3.430!
20.293!9.118!	2.458!7.745!972! = 	0,000	

 

Step three in figure 20 shows that Fisher’s exact test calculates the probabilities of all possible 

tables with equal marginal frequencies. The sum of all probabilities lower than the observed 

probability, multiplied by two, represents the p-value. At this point, it becomes evident that 

Fisher’s exact test does not represent a manual procedure. A computer application is required 

to calculate all required probabilities automatically. However, to illustrate the process, three 

more tables below show how the resulting p-value is calculated (at least for a few steps). The 

following tables differ from the observed table (Tobs), but the marginal frequencies remain the 

same. 
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 No Severe Casualty Severe Casualty Row total 

Male 9.068 (a) 2.448 (b) 11.576 (a + b) 

Not Male 7.795 (c) 982 (d) 10.604 (c + d) 

Column total 16.863 (a + c) 3.430 (b + d) 20.293 (n = a + b + c + d) 

 
Table 12: Exemplary table (T1) with equal marginal frequencies as Tobs. n=20.293 (single-vehicle 
accidents with single occupation and personal injury occurring outside the built-up area on the 
Austrian road network between 2012-2019). 

 

p1 = 11.576! 10.604! 16.863! 3.430!

20.293!9.068! 2.448!7.795!982!
 = 0,000 

 

 No Severe Casualty Severe Casualty Row total 

Male 9.143 (a) 2.445 (b) 11.576 (a + b) 

Not Male 7.720 (c) 985 (d) 10.604 (c + d) 

Column total 16.863 (a + c) 3.430 (b + d) 20.293 (n = a + b + c + d) 

 
Table 13: Exemplary table (T2) with equal marginal frequencies as Tobs. n=20.293 single-vehicle 
accidents with single occupation and personal injury occurring outside the built-up area on the 
Austrian road network between 2012-2019 (3.431 are severe casualties). 

p2 = 11.576! 10.604! 16.863! 3.430!

20.293!9.143! 2.445!7.720!985!
 = 0,000 

 

 No Severe Casualty Severe Casualty Row total 

Male 9.018 (a) 2.408 (b) 11.576 (a + b) 

Not Male 7.845 (c) 1.022 (d) 10.604 (c + d) 

Column total 16.863 (a + c) 3.430 (b + d) 20.293 (n = a + b + c + d) 

 
Table 14: Exemplary table (T3) with equal marginal frequencies as Tobs. n=20.293 single-
vehicle accidents with single occupation and personal injury occurring outside the built-up 
area on the Austrian road network between 2012-2019 (3.431 are severe casualties). Source: 
Author’s compilation. 

p3 = 11.576! 10.604! 16.863! 3.430!

20.293!9.018! 2.408!7.845!1.022!
 = 0,000   
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The final formula for determining the p-value looks as follows (and would, of course, include 

the P-values of all possible 2x2 field tables). 

 

p = 2x  (p1 + p2 + p3 + ... + pn) = .000 

 

For the observed table Tobs, the final p-value results in .000 and a phi coefficient of .133. A Phi 

coefficient of .133 represents a negligible relationship between male drivers and severe 

casualties. Table 15 shows the interpretation of the Phi coefficient.  

ϕ Relationship 

+.70 and higher very strong positive relationship 

+.40 to +.69 strong positive relationship 

+.30 to +.39 moderate positive relationship 

+.20 to +.29 weak positive relationship 

+.01 to +.19 no or negligible relationship 

0 no relationship 

-.01 to -.19 no or negligible relationship 

-.20 to -.29 weak negative relationship 

-.30 to -.39 moderate negative relationship 

-.40 to -.69 strong negative relationship 

-.70 and higher very strong negative relationship 

 
Table 15: Interpretation of the Phi coefficient. 

 

Why can a phi coefficient be negative? This is easy to explain when looking at the Phi coefficient 

formula.  

𝜙 =	
𝑎 × 𝑑	– 	𝑏 × 𝑐

*(𝑎 + 𝑐)	× (𝑏 + 𝑑) × (𝑎 + 𝑏) ×	(𝑐 + 𝑑)
 

 

The Phi coefficient for table 11 looks as follows: 
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𝜙 =	 =.##>×=@A	B	A.CD>×@.@CD
E(=.##>F@.@CD)	×(A.CD>F=@A)×(=.##>F	A.CD>)×	(@.@CDF=@A)

=		0,116	

 

A positive Phi coefficient indicates that the observed characteristic occurs comparatively often 

among severe casualties. A negative Phi coefficient does not mean that the characteristic does 

not occur among severe casualties. It comparatively occurs often among casualties with slight 

injuries.  

 

4.4 Maximum combination value 

In pattern recognition, it is interesting how often a variable occurs in combination with other 

variables. The maximum combination value (most frequent combination of the investigated 

variable with other variables) is an evaluation measure to determine whether a characteristic is 

part of a frequently occurring combination (blackpattern). The maximum combination value 

determines how often one characteristic appears in the same combination with other 

characteristics. It provides the basis for the PATTERMAX-method. 
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4.5 Bootstrapping and confidence intervals 

The newly established binary accident database may serve as a source to develop an accident 

prediction model. We suggest a bootstrap resampling method for parameter estimation to 

establish robust predictive models. The bootstrap resampling method, introduced by Bradley 

Efron, draws samples out of an existing population with replacement. The estimation of 

confidence intervals represents a key application of the bootstrap methodology. Pei, Sze, 

Wong, and Yao (2016) apply the bootstrap resampling method to remove the effects of excess 

zeros on prediction performance. They conclude that the bootstrap resampling method 

generates more accurate and reliable parameter estimates, including reduced standard errors.  

By drawing samples out of an existing population, bootstrapping approximates a distribution 

of the observed data. Bootstrapping is a reliable method to use if the distribution of the 

observed data is unknown. It is a non-parametric method to estimate the parameters of a 

population. In this case, we use bootstrapping to calculate 95% confidence intervals for 

accident-related characteristics. The confidence intervals indicate a probability range for a 

characteristic among severe casualties. We use bias-corrected and accelerated bootstrap 

(BCa) to generate narrow confidence intervals. BCa is less prone to imbalances than other 

bootstrapping methods. In total, we draw 10.000 samples to calculate the 95% confidence 

intervals. Additional statistical figures for each accident-related variable comprise variance s2, 

standard deviation σ, and standard error SEM. 
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4.6 Analysis of driver-related variables 

Driver-related variables include sex, age class, driving licence, impairments, driving 

manoeuvres before the accident, and safety settings. Table 16 illustrates the driver-related 

variables and their detailed characteristics (54 in total). 

 

Variable Characteristics 

Sex male, female, unknown 

Age Class 16 to 18, 19 to 24, 25 to 34, 35 to 44, 45 to 54, 55 to 64, 65+ 

Driving licence no driving licence, probationary driving licence 

Impairments alcohol, distraction, fatigue, health, drugs, medicine, excitation 

Driving manoeuvres speeding, skidding/drifting, hitting an obstacle next to the road, hitting the 

guard rail, hitting a tree, misconduct by the pedestrian, hit and run, sudden 

braking, overtaking, cutting curves, hitting an obstacle on the road, 

changing lanes, inadequate safety distance, reverse driving, phoning, 

turning around, fall from the vehicle, getting in the lane, disregarding 

driving direction, priority violation, driving towards the left side of the road, 

forbidden overtaking, hitting a moving vehicle, disregarding driving ban, 

driving in parallel, opening the vehicle door, hitting a stationary vehicle, 

wrong-way driver, disregarding red light, dangerous stopping and 

parking, disregarding turning ban, missing indication of direction change, 

driving against one way, driving without mandatory light 

Safety settings no safety belt applied 

 
Table 16: Driver-related variables and their characteristics. 

 

The analysis of driver-related variables foresees the calculation of variable frequencies, 

conditional and joint probabilities, Fisher’s exact test and Phi coefficient, the maximum 

combination maximum value, and confidence intervals.  
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As table 17 shows, male drivers hold a share of 57 % (n=11.576) among single-vehicle 

accidents with single occupancy and personal injury occurring outside the built-up area 

between 2012 and 2019 (n=20.293), while female drivers hold a share of 43 % (n=8.706). 

0,05 % of the road traffic accident records do not indicate the sex of the driver (n=11).  A severe 

or fatal accident with a male driver results in a joint probability of 12 %, whereas only 5 % with 

a female driver. Fisher's exact test is highly significant for both sex groups regarding their 

relationship with severe casualties. The Phi coefficient indicates that male drivers increase the 

risk to observe a severe casualty. However, the phi coefficient indicates this relationship to be 

negligible. 

 

Variable X 

 
C: 

Casualties 

SC: 
Severe 

Casualties 

 
 

P (X ∩ SC) 

Fisher's 
exact test 
[Y=severe 
casualty] 

Phi 
coefficient 
[Y=severe 
casualty] 

Comb Max 
[driver-
related 

variables] 

Sex 
n n % p ϕ n 

Male 11.576 2.458 12,11% ,000 ,133 817 

Female 8.706 972 4,79% ,000 -,133 1.132 

Unknown 11 1 - - - - 

Total 20.293 3.431     

 
Table 17: Single-vehicle accidents with single occupation and personal injury that occurred 
outside the built-up area between 2012 and 2019 broken down by sex. n=20.293 (3.431 are 
severe casualties). 

 

The characteristic ‘female driver’ is part of the most frequent combination (blackpattern) of 

driver-related characteristics (a combination occurring 1.132 times). The most frequent 

combination of driver-related characteristics involving male drivers occurs 817 times. The most 

frequent blackpattern among female drivers represents 13 % of all accidents involving female 

drivers. In contrast, the most frequent blackpattern among male drivers represents a share of 

7 % of all accidents among male drivers. Based on these numbers, the question arises if 

accidents involving female drivers result in fewer blackpatterns than accidents involving male 

drivers. Generally, the more often one blackpattern occurs and the fewer blackpatterns exist, 

the more targeted traffic safety work and strategies can be delineated. A detailed 

representation of blackpatterns among female and male drivers follow in chapter 5.1. Figure 

21 illustrates the estimated 95% confidence intervals for both sex groups. The estimation is 

based on a bias-corrected and accelerated bootstrap resampling (BCa) with 10.000 samples. 

The confidence intervals indicate a probability range for a characteristic among severe 

casualties. For male drivers, the 95% confidence interval ranges from 11,9 % to 12,4 %, for 

female drivers from 4,5 % to 5,1 %. The standard error SEM for both variables is 0,13 %. 
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Figure 21: 95% confidence intervals for male drivers or female drivers. The confidence intervals 
estimate the likelihood of the variable and severe casualties to occur (range for joint 
probability). n=20.293 single-vehicle accidents with single occupation and personal injury 
occurring outside the built-up area on the Austrian road network (3.431 are severe casualties). 

 

We continue to with the analysis of different age classes. Table 18 shows that age classes 19 to 

24 (n=806) and 25 to 34 (n=697) have the highest casualties and severe casualties. Severe 

casualties among both age classes tend to be almost equally likely. Interestingly, Fisher's exact 

test is not significant for severe casualties and age class 25 to 34, but highly significant for 

severe casualties and age class 19 to 24. Except for age class 35 to 44, all other age classes are 

significantly correlated with severe casualties. The phi coefficient shows a negligible 

relationship (values between ±,01 to ±,19) for all ages classes and severe casualties. Each age 

class shows a relatively high maximum combination value. 
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Variable X 

 
C: 

Casualties 

SC: 
Severe 

Casualties 

 
 

P (X ∩ SC) 

Fisher's 
exact test 
[Y=severe 
casualty] 

Phi 
coefficient 
[Y=severe 
casualty] 

Comb Max 
[driver-
related 

variables] 

Age class 
n n % p ϕ n 

16 to 18 1.465 162 0,80% ,000 -,044 171 

19 to 24 6.547 806 3,97% ,000 -,085 1.132 

25 to 34 4.323 697 3,43% ,120 -,011 830 

35 to 44 2.488 468 2,31% ,008 ,019 432 

45 to 54 2.180 476 2,35% ,000 ,046 382 

55 to 64 1.404 323 1,59% ,000 ,044 212 

64 and higher 1.878 499 2,46% ,000 ,082 303 

unknown 8      

total 20.293 3.431     

 
Table 18: Single-vehicle accidents with single occupation and personal injury that occurred 
outside the built-up area between 2012 and 2019 broken down by age class. n=20.293 (3.431 
are severe casualties). 

Figure 22 shows the age distribution (in this case, on a metric scale) among accidents involving 

male or female drivers, broken down by accidents with minor injury accidents and severe and 

fatal accidents (severe casualties). The illustrated violin plot confirms that most accidents occur 

in the two age classes 19 to 24 and 25 to 34. 

 

Figure 22: Age distribution in accidents involving male and female drivers, divided into 
accidents with a minor injury and severe or fatal accidents. n=20.293 single-vehicle accidents 
with single occupation and personal injury occurring outside the built-up area on the Austrian 
road network between 2012-2019 (3.431 are severe casualties). The violin plot represents a 
probability density function. 
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The 95 % confidence intervals for each age class are shown in figure 23 and present the 

following probability ranges: 

• age class 16 to 18: from 0,68 % to 0,93 %, standard error of 0,06 % 

• age class 19 to 24: from 3,37 % to 4,21 %, standard error of 0,12 % 

• age class 25 to 34: from 3,21 % to 3,66 %, standard error of 0,12 % 

• age class 35 to 44: from 2,11 % to 2,51 %, standard error of 0,10 % 

• age class 45 to 54: from 2,14 % to 2,53 %, standard error of 0,99 % 

• age class 55 to 64: from 1,43 % to 1,76 %, standard error of 0,09 % 

• age class 65+: from 2,25 % to 2,66 %, standard error of 0,10 % 

 

 

Figure 23: 95% confidence intervals for different age classes. The confidence intervals estimate 
the likelihood of the variables and severe casualties to occur (range for joint probability). 
n=20.293 single-vehicle accidents with single occupation and personal injury occurring 
outside the built-up area on the Austrian road network (3.431 are severe casualties). 
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We now investigate the variable ‘driving licence type’ with the two characteristics ‘probationary 

driving licence and ‘no driving licence’. Table 19 shows the detailed results for both 

characteristics. 

 

Variable X 

 
C: 

Casualties 

SC: 
Severe 

Casualties 

 
 

P (X ∩ SC) 

Fisher's 
exact test 
[Y=severe 
casualty] 

Phi 
coefficient 
[Y=severe 
casualty] 

Comb Max 
[driver-
related 

variables] 

Driving licence type 
n n % p ϕ n 

No driving licence 356 94 0,46% ,020 ,034 15 

Probationary driving 
licence 

2.805 303 1,49% ,000 -,065 391 

 
Table 19: Single-vehicle accidents with single occupation and personal injury that occurred 
outside the built-up area between 2012 and 2019 broken down by driving licence type. 
n=20.293 (3.431 are severe casualties). 

 

The variable ‘probationary driving licence’ appears to correlate with severe casualties 

significantly. Yet, the strength of the relationship is negligible. Chapter eight will search for 

specific variable combinations (blackpatterns) that include ‘probationary driving licence’. A 

better understanding of accident circumstances may help design appropriate intervention 

measures for this target group (young drivers, respectively). The number of casualties and 

severe casualties involving drivers without driving licences is surprisingly high (a total value of 

94 in our observation period 2012-2019). Figure 24 illustrates the 95 % confidence intervals 

for both characteristics. The likelihood of observing a severe road traffic accident involving a 

driver with a ‘probationary driving licence’ ranges from 1,3 % to 1,7 %, with a standard error of 

0,08 %. The 95% confidence interval for ‘no driving licence’ ranges from 0,4 % to 0,6 %, with a 

standard error of 0,05 %. 



69 
 

 

Figure 24: 95% confidence intervals for ‘probationary driving licence’ and ‘no driving licence’. 
The confidence intervals estimate the likelihood of the variables and severe casualties to occur 
(range for joint probability). n=20.293 single-vehicle accidents with single occupation and 
personal injury occurring outside the built-up area on the Austrian road network (3.431 are 
severe casualties). 

 

Driver-related variables comprise different types of impairment, as table 20 shows. ‘Alcohol’ 

and ‘distraction’ are the most frequently observed types of impairment but do not appear to 

have a significant relationship with the target variable severe casualties. ‘Fatigue’ is the only 

type of impairment indicating a significant relationship with severe casualties. 
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Variable X 

 
C: 

Casualties 

SC: 
Severe 

Casualties 

 
 

P (X ∩ SC) 

Fisher's 
exact test 
[Y=severe 
casualty] 

Phi 
coefficient 
[Y=severe 
casualty] 

Comb Max 
[driver-
related 

variables] 

Impairment 
n n % p ϕ n 

Alcohol 2.858 481 2,37% ,934 -,001 246 

Distraction 2.369 431 2,12% ,079 ,012 93 

Fatigue 1.518 317 1,56% ,000 ,030 134 

Health 432 91 0,45% ,021 ,016 38 

Drugs 66 15 0,07% ,247 ,009 3 

Medicines 50 10 0,05% ,570 ,004 2 

Excitation 7 2 0,01% ,337 ,006 1 

 
Table 20: Single-vehicle accidents with single occupation and personal injury that occurred 
outside the built-up area between 2012 and 2019 broken down by impairment. n=20.293 
3.431 are severe casualties). 

 

One aspect of discovering with blackpatterns (chapter eight) is if there exist differences in 

impairments between female and male drivers. To get an insight into the answer to that 

question, we illustrate violin plots including age (in this case, on a metric scale), impairment, 

and sex for the three most frequently observed types of impairment in figure 25. The violin 

plots suggest that ‘alcohol’ holds a higher share among male and mostly younger drivers. The 

age distribution among female drivers impaired by ‘alcohol’ is distributed across all age classes 

up to sixty years. The violin plot illustrating the distribution of ‘fatigue’ among age classes and 

both sex groups suggests that fatigue primarily occurs among younger age classes when 

looking at male drivers. The probability density function is almost equally distributed over the 

age classes for female drivers, with a slight drop around 30-40. ‘Distraction’ appears to occur 

mostly among younger drivers. All three types of impairment have their peaks within younger 

age classes. 

 

 

Figure 25: Distribution of age, impairment and sex among the observed road traffic accidents. 
n=20.293 single-vehicle accidents with single occupation and personal injury occurring 
outside the built-up area on the Austrian road network between 2012-2019 (3.431 are severe 
casualties). The violin plots represent a probability density function. 
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We conclude the detailed analysis of impairments with the illustration of the 95 % confidence 

intervals for the top three types of impairment. The confidence intervals represent the 

probability ranges for the type of impairment to occur with severe casualties. For ‘alcohol’, the 

range goes from 2,17 % to 2,58 %, with a standard error of 0,10 %. ‘Distraction’ ranges from 

1,94 % to 2,32 % and has a standard error of 0,09 %. ‘Fatigue’ ranges from 1,39 % to 1,73 % 

and has a standard error of 0,08 %. 

 

 

Figure 26: 95% confidence intervals for ‘alcohol’, ‘distraction’ and ‘fatigue’. The confidence 
intervals estimate the likelihood of the variables and severe casualties to occur (range for joint 
probability). n=20.293 single-vehicle accidents with single occupation and personal injury 
occurring outside the built-up area on the Austrian road network (3.431 are severe casualties). 

 

After analysing sex, age classes, types of driving licence, and impairments, we evaluate 

recorded driving manoeuvres before the accident. Table 21 illustrates detailed results for 

different driving manoeuvres such as speeding, hitting obstacles, turning around, overtaking 

etc. 
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Variable X 

 
C: 

Casualties 

SC: 
Severe 

Casualties 

 
 

P (X ∩ SC) 

Fisher's 
exact test 
[Y=severe 
casualty] 

Phi 
coefficient 
[Y=severe 
casualty] 

Comb Max 
[driver-
related 

variables] 

Driving manoeuvres 
n n % p ϕ n 

Speeding 3.608 579 2,85% ,136 -,011 131 

Skidding 1.823 239 1,18% ,000 -.032 80 

Hitting an obstacle next 
to the road 

1.512 280 1,38% ,086 ,012 35 

Hitting the guard rail 1.378 181 0,89% ,000 -,027 37 

Hitting a tree 1.217 318 1,57% ,000 ,062 23 

Misconduct by 
pedestrians 

503 79 0,39% ,505 -,005 12 

Hit and run 371 53 0,26% ,186 -,010 22 

Sudden braking 149 11 0,05% ,002 -.022 9 

Overtaking 147 26 0,13% ,834 ,002 8 

Cutting curves 128 27 0,13% ,194 ,009 4 

Hitting an obstacle on 
the road 

117 6 0,03% ,001 -,024 7 

Changing lanes 58 9 0,04% 1,000 -,002 3 

Inadequate safety 
distance 

38 7 0,03% ,828 ,002 1 

Reverse driving 26 6 0,03% ,429 ,006 2 

Phoning 25 7 0,03% ,175 ,010 1 

Turning around 22 4 0,02% ,780 ,001 3 

Fall from the vehicle 22 11 0,05% ,000 ,029 2 

Getting in lane 18 4 0,02% ,529 ,004 1 

Disregarding driving 
direction 

16 2 0,01% 1,000 -,003 1 

Priority violation 15 4 0,02% ,302 ,007 1 

Driving towards the left-
hand side of the road 

9 3 0,01% ,184 ,009 1 

Forbidden overtaking 8 2 0,01% ,630 ,004 1 

Hitting a moving  
vehicle 

8 0 0,00% ,367 -,009 2 

Disregarding driving  
ban 

5 2 0,01% ,201 ,010 1 

 
Table 21: Single-vehicle accidents with single occupation and personal injury that occurred 
outside the built-up area between 2012 and 2019 broken down by driving manoeuvre. 
n=20.293 (3.431 are severe casualties). 
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Variable X 

 
C: 

Casualties 

SC: 
Severe 

Casualties 

 
 

P (X ∩ SC) 

Fisher's 
exact test 
[Y=severe 
casualty] 

Phi 
coefficient 
[Y=severe 
casualty] 

Comb Max 
[driver-
related 

variables] 

Driving manoeuvres 
n n % p ϕ n 

Driving in parallel 5 1 0,00% 1,000 ,604 1 

Opening the  vehicle 
door 

5 2 0,01% ,201 ,010 1 

Hitting a stationary 
vehicle 

3 0 0,00% 1,000 -,005 1 

Wrong-way driver 1 0 0,00% 1,000 -,003 1 

Disregarding red light 1 0 0,00% 1,000 -,003 1 

Dangerous stopping  
and parking 

0 0 - - - - 

Disregarding turning  
ban 

0 0 - - - - 

Missing indication of 
direction change 

0 0 - - - - 

Driving against  
one-way 

0 0 - - - - 

Driving without 
mandatory light 

0 0 - - - - 

 
Continuation of table 21: Single-vehicle accidents with single occupation and personal injury 
that occurred outside the built-up area between 2012 and 2019 broken down by driving 
manoeuvre. n=20.293 (3.431 are severe casualties). 

 

‘Speeding’ and ‘skidding’ are the most frequently observed driving manoeuvres before the 

accident. Of these two variables, skidding shows a significant relationship with severe 

casualties. Also, the joint probability for speeding and a severe or fatal accident is more than 

twice as high as for skidding. ‘Hitting the guard rail’, ‘hitting a tree’ and ‘hitting an obstacle on 

the road’ appear to correlate with the target variable severe casualties significantly. Of these 

three, ‘hitting the guard rail’ and ‘hitting a tree’ show relatively high frequencies among severe 

casualties, whereas ‘hitting an obstacle on the road’ occurs only six times. 

The two most frequently observed driving manoeuvres before the accident were ‘speeding’ 

and ‘skidding’. Figure 27 illustrates the corresponding violin plots, including age (in this case, 

on a metric scale level) and sex. The violin plots do not show differences among female drivers 

and male drives. Both characteristics show their peak among younger age classes. 
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Figure 27: Distribution of age, driving manoeuvres and sex among the observed road traffic 
accidents. n=20.293 single-vehicle accidents with single occupation and personal injury 
occurring outside the built-up area on the Austrian road network between 2012-2019 (3.431 
are severe casualties). The violin plot represents a probability density function. 

 

The 95 % confidence interval for ‘speeding’ ranges from 2,65 % to 3,07 %, and the distribution 

has a standard error of 0,11 %. For ‘skidding’, the range spans 1,03 % to 1,33 % and has a 

standard error of 0,07 %. Figure 28 illustrates the confidence intervals for both characteristics. 

 

 

Figure 28: 95% confidence intervals for ‘speeding and ‘skidding’. The confidence intervals 
estimate the likelihood of the variables and severe casualties to occur (range for joint 
probability). n=20.293 single-vehicle accidents with single occupation and personal injury 
occurring outside the built-up area on the Austrian road network (3.431 are severe casualties). 
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The investigation of safety settings concludes the analysis of driver-related variables.  

Table 22 illustrates the recorded values for the variable ‘no safety belt applied’.  Besides sex 

and age class, severe casualties show the highest joint probability given the ‘no safety belt 

applied’ variable. Table 22 reveals the impact of the characteristic ‘no safety belt applied’ on 

severe casualties. Compared to the other 54 driver-related characteristics, ‘no safety belt 

applied’ shows the highest phi coefficient (0,240) and goes along with a higher number of 

severe casualties than the variable ‘no safety belt applied’. 

 

Variable X 

 
C: 

Casualties 

SC: 
Severe 

Casualties 

 
 

P (X ∩ SC) 

Fisher's 
exact test 
[Y=severe 
casualty] 

Phi 
coefficient 
[Y=severe 
casualty] 

Comb Max 
[driver-
related 

variables] 

Safety settings 
n n % p ϕ n 

No safety belt applied 1.401 699 3,44% ,000 ,240 60 

 
Table 22: Single-vehicle accidents with single occupation and personal injury that occurred 
outside the built-up area between 2012 and 2019 broken down by safety settings. n=20.293 
(3.431 are severe casualties). 

 

Figure 29 suggests that the characteristic ‘no safety belt applied’ primarily occurs among 

young male and female drivers. For female drivers, the peak is lower among younger age 

classes. 

 

Figure 29: Distribution of age, ‘no safety belt applied’ and sex among the observed road traffic 
accidents. n=20.293 single-vehicle accidents with single occupation and personal injury 
occurring outside the built-up area on the Austrian road network between 2012-2019 (3.431 
are severe casualties). The violin plot represents a probability density function. 
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The 95 % confidence interval for the characteristics ‘no safety belt applied’ ranges from 3,21 % 

to 3,68 %, and the distribution has a standard error of 0,02 % (see figure 30). 

 

 

Figure 30: 95% confidence intervals for ‘no safety belt applied’. The confidence intervals 
estimate the likelihood of the characteristics and severe casualties (range for joint probability). 
n=20.293 single-vehicle accidents with single occupation and personal injury occurring 
outside the built-up area on the Austrian road network (3.431 are severe casualties). 

 

The following figure 31 provides an overview of the presented driver-related accident 

characteristics. It intends to zoom into the shares of these characteristics among severe 

casualties (severe and fatal accidents) with male and female drivers. Severe casualties with male 

drivers have a total of 2.458, and severe casualties with female drivers have a total of 972. 

Among severe casualties, the share of female drivers owning a ‘probationary driving licence’ is 

higher. The share of male drivers not applying a safety belt is twice as high as for female drivers 

not applying a safety belt. The variables ‘speeding’ and ‘fatigue’ do not differ between severe 

casualties with female and male drivers. Regarding ‘alcohol’, the share of male drivers impaired 

by alcohol is three times higher than female drivers. ‘Distraction’ shows a higher share among 

severe casualties with female drivers. 
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Figure 31: Relative frequencies (or conditional probabilities) of selected driver-related 
characteristics among severe casualties with male and female drivers. n=20.293 single-vehicle 
accidents with single occupation and personal injury occurring outside the built-up area on the 
Austrian road network between 2012-2019 (3.431 are severe casualties). 
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4.7 Analysis of vehicle-related variables 

Vehicle-related variables comprise engine power, kilometrage, vehicle colour and vehicle 

safety settings. Table 23 illustrates vehicle-related variables and their characteristics. The 

analysis of vehicle-related variables includes variable frequencies and conditional and joint 

probabilities of the variable characteristics to occur among severe casualties. Fisher’s exact test 

examines whether a statistical relationship exists between a characteristic and severe 

casualties. The Phi coefficient estimates the strength of this relationship. The maximum 

combination value illustrates the most frequent variable combination for each vehicle-related 

characteristic. 

Variable Characteristic 

Engine power (kW) 0-24, 24-90, 90-110, 100+ 

Kilometrage (km) 
0 to 15.000, 15.000 to 75.000, 75.000 to 100.000, 100.000 to 150.000, 

150.000 to 200.000 

Vehicle colour 

 

beige, blue, brown, bronze, dark, yellow, gold, grey, green, bright, 

orange, red, black, silver, purple, white, others 

Vehicle safety settings insufficient vehicle security, insufficient load security, technical defects, 

vehicle fire, airbag deployed, airbag not deployed 

 
Table 23: Vehicle-related variables. 

 

We start with a detailed analysis of the variable ‘engine power’. Table 24 shows that all engine 

power classes show a significant relationship with severe casualties except for engine power 

class ‘0 to 24 kW’. According to the Phi coefficient, the strength of this relationship is negligible. 

Engine power from ‘24-90 kW’ shows the highest frequency among casualties and severe 

casualties, followed by engine power from ‘90-110kW’ and ‘100+ kW’ (both classes hold almost 

the same share among all casualties and severe casualties). 
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Variable X 

 
C: 

Casualties 

SC: 
Severe 

Casualties 

 
 

P (X ∩ SC) 

Fisher's 
exact test 
[Y=severe 
casualty] 

Phi 
coefficient 
[Y=severe 
casualty] 

Comb Max 
[vehicle-
related 

variables] 

Engine Power [kW] 
n n % p ϕ n 

0-24 11 3 0,01% ,411 ,006 2 

24-90 15.412 2.393 11,79% ,000 -,066 975 

90-110 1.928 413 2,04% ,000 ,039 201 

110+ 1.947 448 2,21% ,000 ,053 256 

 
Table 24: Single-vehicle accidents with single occupation and personal injury that occurred 
outside the built-up area between 2012 and 2019 divided by engine power. n=20.293 (3.431 
are severe casualties). 

 

Kilometrage (see table 25) appears to have no significant relationship with severe casualties. 

The probability of a severe or fatal accident appears to rise with vehicle kilometrage. The Phi 

coefficient shows a negligible strength of relationship for all kilometrage classes. 

 

Variable X 

 
C: 

Casualties 

SC: 
Severe 

Casualties 

 
 

P (X ∩ SC) 

Fisher's 
exact test 
[Y=severe 
casualty] 

Phi 
coefficient 
[Y=severe 
casualty] 

Comb Max 
[vehicle-
related 

variables] 

Kilometrage [km] 
n n % p ϕ n 

0 to 15.000 156 24 0,12% ,662 -,004 13 

15.000 to 75.000 605 89 0,44% ,154 -,010 51 

75.000 to 100.000 387 70 0,34% ,541 ,004 33 

100.000 to 150.000 663 104 0,51% ,428 -,006 44 

150.000 to 200.000 942 176 0,87% ,141 ,010 56 

 
Table 25: Single-vehicle accidents with single occupation and personal injury that occurred 
outside the built-up area between 2012 and 2019 divided by kilometrage. n=20.293 (3.431 
are severe casualties). 
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The analysis of vehicle-related variables proceeds with vehicle colour and its relationship with 

severe casualties (see table 26). Except for blue and green, no vehicle colour has a significant 

relationship with severe casualties. Severe casualties with black, blue, grey, and red vehicles 

show the highest frequencies. 

 

Variable X 

 
C: 

Casualties 

SC: 
Severe 

Casualties 

 
 

P (X ∩ SC) 

Fisher's 
exact test 
[Y=severe 
casualty] 

Phi 
coefficient 
[Y=severe 
casualty] 

Comb Max 
[vehicle-
related 

variables] 

Vehicle Colour 
n n % p ϕ n 

Beige 18 3 0,01% 1,000 ,000 5 

Blue 3.166 478 2,36% ,003 -,021 868 

Brown 193 35 0,17% ,637 ,003 52 

Bronze 1 0 0,00% 1,000 -,003 1 

Dark 30 6 0,03% ,626 ,003 6 

Yellow 129 18 0,09% ,408 -,006 37 

Gold 18 3 0,01% 1,000 ,000 5 

Grey 2.702 462 2,28% ,784 ,002 770 

Green 1.219 262 1,29% ,000 ,031 281 

Bright 8 2 0,01% ,630 ,004 2 

Orange 130 24 0,12% ,647 ,003 41 

Red 2.272 381 1,88% ,857 -,001 602 

Black 3.981 652 3,21% ,334 -,007 958 

Silver 716 136 0,67% ,127 0,11 146 

Purple 49 8 0,04% 1,000 -,001 11 

White 1.907 323 1,59% ,977 ,000 497 

Others 1 1 0,00% ,169 ,016 1 

 
Table 26: Single-vehicle accidents with single occupation and personal injury that occurred 
outside the built-up area between 2012 and 2019 divided by vehicle colour. n=20.293 (3.431 
are severe casualties). 
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The analysis of vehicle-related variables concludes with investigating vehicle safety settings 

(see table 27). Here we can see that the variable ‘airbag not deployed’ shows a comparatively 

high probability of occurrence (4 %) and a comparatively high combination maximum value 

(975). The other variables relating to vehicle safety settings (i.e., insufficient vehicle security, 

insufficient load securing, technical defects, and vehicle fire) show a low maximum 

combination value.  Vehicle fire has a significant relationship with severe casualties: out of 18 

accidents with a vehicle fire, 11 resulted in a severe casualty. Compared with all the Phi 

coefficient values we have seen thus far, the Phi coefficient between ‘airbag not deployed’ and 

severe casualties is relatively high. However, it still indicates a negligible relationship. 

 

Variable X 

 
C: 

Casualties 

SC: 
Severe 

Casualties 

 
 

P (X ∩ SC) 

Fisher's 
exact test 
[Y=severe 
casualty] 

Phi 
coefficient 
[Y=severe 
casualty] 

Comb Max 
[vehicle-
related 

variables] 

Vehicle safety settings n n % p ϕ n 

Insufficient vehicle 
security 

16 6 0,03% ,040 ,015 2 

Insufficient load  
securing 

6 0 0,00% ,598 -,008 1 

Technical defects 102 15 0,07% ,682 -,004 6 

Vehicle fire 18 11 0,05% ,000 ,035 1 

Airbag not deployed 8.138 819 4,04% ,000 -,149 975 

 
Table 27: Single-vehicle accidents with single occupation and personal injury that occurred 
outside the built-up area between 2012 and 2019 divided by vehicle safety settings. n=20.293 
(3.431 are severe casualties). 

 

Figure 32 shows the 95 % confidence interval for the characteristics ‘airbag not deployed’ to 

occur among severe casualties. The confidence interval represents a probability range from 

3,80 % to 4,28 %. The distribution has a standard error of 0,12 %.  
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Figure 32: 95% confidence intervals for ‘airbag not deployed’. The confidence intervals 
estimate the likelihood of the characteristics and severe casualties to occur (range for joint 
probability). n=20.293 single-vehicle accidents with single occupation and personal injury 
occurring outside the built-up area on the Austrian road network (3.431 are severe casualties). 
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4.8 Analysis of roadway-related variables 

Roadway-related variables comprise speed limit, road characteristics, traffic lights, road type, 

and road condition. Table 28 illustrates all roadway-related variables and their characteristics. 

 

Variable Characteristics 

Speed limit (km/h) Driving ban, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130 

Road characteristics 

Intersection, Roundabout, Deceleration Lane, Acceleration Lane, One-

way, Construction site, Cycle path, Crosswalk, Pedestrian and cycle 

path, Parking Lane, Secondary Lane, Hard shoulder, Banquet, Straight 

Road, Tunnel, Gallery, Rest area, Traffic Island, Underpass, Middle 

separation, Bridge, Curve, Narrow Lane, Entry or exit, Tram or bus 

station 

Traffic light Traffic light in operation 

Road type Highway, Expressway, Regional Road, Other roads 

Road condition 
Dry road, Wet Road, Sand or grit on the road, Winter conditions, other 

conditions (oil, soil) 

 
Table 28: Roadway-related variables. 

 

The analysis of roadway-related variables and their characteristics foresees the calculation of 

variable frequencies, joint and conditional probabilities, Fisher’s exact test and the Phi 

coefficient, and the maximum combination value. The following paragraphs summarize the key 

insights of analysing roadway-related variables. 

 

Table 29 represents the distribution and statistics of different speed limits (km/h) regarding 

severe casualties. According to Fisher’s exact test results, no speed limit shows a significant 

relationship with severe casualties. The speeds limits of 50 km/h, 70 km/h, 80 km/h, 100 km/h, 

and 130 km/h result in relatively high maximum combination values. 63 % (2.148) of severe 

casualties occur within a speed limit of 100km/h. 
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Variable X 

 
C: 

Casualties 

SC: 
Severe 

Casualties 

 
 

P (X ∩ SC) 

Fisher's 
exact test 
[Y=severe 
casualty] 

Phi 
coefficient 
[Y=severe 
casualty] 

Comb Max 
[roadway-

related 
variables] 

Speed limit (km/h) 
n n % p ϕ n 

Driving ban 2.270 380 1,87% ,833 -,002 350 

5 1 1 0,00% ,169 ,016 1 

10 1 0 0,00% 1,000 -,003 1 

20 2 0 0,00% 1,000 -,004 1 

30 173 33 0,16% ,479 ,005 13 

40 40 8 0,04% ,533 ,004 6 

50 505 71 0,35% ,095 -,012 56 

60 334 55 0,27% ,877 -,002 43 

70 1.421 218 1,07% ,108 -,011 321 

80 1.231 192 0,95% ,225 -,009 222 

90 3 0 0,00% 1,000 -,005 1 

100 12.292 2.148 10,58% ,008 ,019 2.232 

110 35 4 0,02% ,502 -,006 10 

120 2 0 0,00% 1,000 -,004 1 

130 1.983 321 1,58% ,377 -,006 488 

 
Table 29: Single-vehicle accidents with single occupation and personal injury that occurred 
outside the built-up area between 2012 and 2019 broken down by speed limit.  n=20.293 
(3.431 are severe casualties). 

 

Figure 33 shows the 95 % confidence intervals for the speed limits 50 km/h, 70 km/h, 80 km/h 

and 130 km/h. Since the speed limit 100 km/h shows a higher joint probability with severe 

casualties, we illustrate the respective confidence interval separately in Figure 35. The 95 % 

confidence represent the following probability ranges: 

• speed limit 50km/h: 0,28 % to 0,43 %, standard error of 0,04 % 

• speed limit 70km/h: 0,94 % to 1,22 %, standard error of 0,07 % 

• speed limit 80km/h: 0,82 % to 1,08 %, standard error of 0,07 % 

• speed limit 130km/h: 1,42 % to 1,74 %, standard error of 0,08 % 



85 
 

 

Figure 33: 95% confidence intervals for different speed limits (km/h). The confidence intervals 
estimate the likelihood of the characteristics and severe casualties to occur (range for joint 
probability). n=20.293 single-vehicle accidents with single occupation and personal injury 
occurring outside the built-up area on the Austrian road network (3.431 are severe casualties). 

 

Within the blackpattern recognition process, it is of interest to blend speed limits with road 

types. Table 30 shows the statistical key figures for casualties among different road types. 

‘Country roads’ show the highest joint probabilities with severe casualties but no significant 

relationship with severe casualties. ‘Expressways’ and ‘other roads’ appear to correlate with 

severe casualties significantly. 
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Variable X 

 
C: 

Casualties 

SC: 
Severe 
Casualties 

 
 

P (X ∩ SC) 

Fisher's 
exact test 
[Y=severe 

casualty] 

Phi 
coefficient 
[Y=severe 

casualty] 

Comb Max 
[roadway-

related 
variables] 

Road type 
n n % p ϕ n 

Highway 2.593 417 2,05% ,239 -,008 488 

Expressway 595 80 0,39% ,024 -,016 82 

Country road 14.457 2.416 11,91% ,247 -,008 2.232 

Other roads 2.220 463 2,28% ,000 ,037 248 

Table 30: Single-vehicle accidents with single occupation and personal injury that occurred 
outside the built-up area between 2012 and 2019 broken down by road type. n=20.293 (of 
which 3.431 are severe casualties). 

 

Figure 34 illustrates the 95 % confidence intervals for the road types ‘highway, ‘expressway’ 

and ‘other road’. As the road type ‘country road’ is higher frequency, we illustrate it separately 

in figure 35. The probability ranges for the three road types are: 

• highway: 1,88 % to 2,24 %, standard error of 0,09 % 

• expressway: 0,31 % to 0,48 %, standard error of 0,04 % 

• other road: 2,08 % to 2,47 %, standard error of 0,10 % 

 

Figure 34: 95% confidence intervals for different road types. The confidence intervals estimate 
the likelihood of the characteristics and severe casualties to occur (range for joint probability). 
n=20.293 single-vehicle accidents with single occupation and personal injury occurring 
outside the built-up area on the Austrian road network (3.431 are severe casualties). 
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In figure 35, we see the 95 % confidence intervals for the variables ‘country road’ and ‘speed 

limit 100 km/h’. For ‘country road’, the 95 % confidence interval ranges from 11,65 % to 

12,16 %, and the standard error of the distribution is 0,13 %. For ‘speed limit 100 km/h’, the 95 

% confidence interval ranges from 10,31 % to 10,85 %, and the standard error of the 

distribution is 0,14 %. 

 

 

Figure 35: 95% confidence intervals for ‘country road’ and ‘speed limit 100km/h’. The 
confidence intervals estimate the likelihood of the characteristics and severe casualties to occur 
(range for joint probability). n=20.293 single-vehicle accidents with single occupation and 
personal injury occurring outside the built-up area on the Austrian road network (3.431 are 
severe casualties). 

 

The analysis for roadway-related variables continues with the investigation of road 

characteristics (see table 31). The road characteristics ‘straight road’, ‘curve’, ‘bridge’, ‘tunnel’, 

‘gallery’, ‘middle separation’ and ‘entry or exit’ show a significant relationship with severe 

casualties. 
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Variable X 

 
C: 

Casualties 

SC: 
Severe 

Casualties 

 
 

P (X ∩ SC) 

Fisher's 
exact test 
[Y=severe 
casualty] 

Phi 
coefficient 
[Y=severe 
casualty] 

Comb Max 
[roadway-

related 
variables] 

Road characteristics 
n n % p ϕ n 

Intersection 439 62 0,31% ,125 -,011 62 

Roundabout 68 16 0,08% ,146 ,010 11 

Deceleration lane 10 2 0,01% ,681 ,002 1 

Acceleration lane 3 1 0,00% ,426 ,005 1 

One-way 144 33 0,16% ,054 ,014 26 

Construction site 157 21 0,10% ,286 -,008 10 

Cycle path 4 0 0,00% 1,000 -,006 1 

Crosswalk 3 0 0,00% 1,000 -,006 1 

Pedestrian and cycle 
path 

10 2 0,01% ,681 ,002 3 

Parking lane 7 0 0,00% ,610 -,008 1 

Secondary lane 5 1 0,00% 1,000 ,001 1 

Hard shoulder 45 9 0,04% ,551 ,004 7 

Banquet 123 22 0,11% ,729 ,002 22 

Straight road 11.507 2.095 10,32% ,000 ,040 2.232 

Tunnel 89 26 0,13% ,004 ,022 8 

Gallery 15 8 0,04% ,001 ,026 1 

Rest area 26 6 0,03% ,429 ,006 2 

Traffic island 81 18 0,09% ,233 ,009 4 

Underpass 32 7 0,03% ,476 ,005 3 

Middle separation 777 104 0,51% ,008 -,019 137 

Bridge 157 41 0,20% ,003 ,022 7 

Curve 8.399 1.264 6,23% ,000 -,042 1.437 

 
Table 31: Single-vehicle accidents with single occupation and personal injury that occurred 
outside the built-up area between 2012 and 2019 broken down by road characteristics. 
n=20.293 (3.431 are severe casualties). 
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Variable X 

 
C: 

Casualties 

SC: 
Severe 

Casualties 

 
 

P (X ∩ SC) 

Fisher's 
exact test 
[Y=severe 
casualty] 

Phi 
coefficient 
[Y=severe 
casualty] 

Comb Max 
[roadway-

related 
variables] 

Road characteristics 
n n % p ϕ n 

Narrow lane 30 8 0,04% ,149 ,010 3 

Entry or exit 57 17 0,08% ,019 ,018 5 

Tram or bus station 8 2 0,01% ,630 ,004 1 

 

Continuation of table 31: Single-vehicle accidents with single occupation and personal injury 
that occurred outside the built-up area between 2012 and 2019 broken down by road 
characteristics. n=20.293 (3.431 are severe casualties). 

 

Road conditions describe the condition of the road surface when the accident occurs. Except 

for ‘other conditions’, all road surface conditions result in a maximum combination value above 

50 (see table 32). ‘Dry road’, ‘wet road’, and ‘wintry conditions’ appear to correlate with severe 

casualties significantly. The characteristic ‘sand or grit on the road’ does not significantly 

correlate with severe casualties. 

 

Variable X 

 
C: 

Casualties 

SC: 
Severe 

Casualties 

 
 

P (X ∩ SC) 

Fisher's 
exact test 
[Y=severe 
casualty] 

Phi 
coefficient 
[Y=severe 
casualty] 

Comb Max 
[roadway-

related 
variables] 

Road condition 
n n % p ϕ n 

Dry road 10.441 2.126 10,48% ,000 ,095 2.232 

Wet road 5.705 872 4,30% ,000 -0,27 1.225 

Sand or grit on the road 297 48 0,24% ,809 -,002 56 

Wintry conditions 3.771 370 1,82% ,000 -,090 938 

Other conditions  
(oil, soil) 

95 17 0,08% ,796 ,002 16 

 
Table 32: Single-vehicle accidents with single occupation and personal injury that occurred 
outside the built-up area between 2012 and 2019 broken down by road condition. n=20.293 
(3.431 are severe casualties). 
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Figure 37 shows the 95 % confidence intervals for the characteristics ‘curve’, ‘wet road’ and 

‘wintry conditions’. The confidence intervals for these characteristics result in the following 

probability ranges: 

• curve: 5,96 % to 6,50 %, standard error of 0,14 % 

• wet road: 4,06 % to 4,55 %, standard error of 0,12 % 

• wintry conditions: 1,65 % to 2,00 %, standard error of 0,09 % 

 

 

Figure 36: 95% confidence intervals for different road characteristics. The confidence intervals 
estimate the likelihood of the characteristics and severe casualties to occur (range for joint 
probability). n=20.293 single-vehicle accidents with single occupation and personal injury 
occurring outside the built-up area on the Austrian road network (3.431 are severe casualties). 

 

Figure 37 shows the 95 % confidence intervals for the characteristics ‘intersection’, ‘middle 

separation’ and ‘sand or grit on the road’. The confidence intervals for these characteristics 

result in the following probability ranges: 

• intersection: 0,24 % to 0,38 %, standard error of 0,04 % 

• middle separation: 0,42 % to 0,61 %, standard error of 0,05 % 

• sand or grit on the road: 0,18 % to 0,30 %, standard error of 0,03 % 
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Figure 37: 95% confidence intervals for different road characteristics. The confidence intervals 
estimate the likelihood of the characteristics and severe casualties to occur (range for joint 
probability). n=20.293 single-vehicle accidents with single occupation and personal injury 
occurring outside the built-up area on the Austrian road network (3.431 are severe casualties). 

 

The analysis of roadway-related characteristics concludes with the analysis of traffic lights. The 

characteristic ‘traffic light in full operation’ does not significantly affect our target variable 

severe casualties. 

Variable X 

 
C: 

Casualties 

SC: 
Severe 

Casualties 

 
 

P (X ∩ SC) 

Fisher's 
exact test 
[Y=severe 
casualty] 

Phi 
coefficient 
[Y=severe 
casualty] 

Comb Max 
[roadway-

related 
variables] 

Traffic lights 
n n % p ϕ n 

Traffic light in full 
operation 

29 2 0,01% ,213 -,010 4 

 
Table 33: Single-vehicle accidents with single occupation and personal injury that occurred 
outside the built-up area between 2012 and 2019 broken down by traffic lights. n=20.293 
(3.431 are severe casualties). 

 

Figure 38 illustrates the relative frequency of selected characteristics among severe casualties 

and casualties with a slight injury. The characteristics ‘other road’, ‘speed limit 100 km/h’, ‘dry 

road’ and ‘straight road’ hold a higher share among severe casualties. 
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Figure 38: Relative frequency (or conditional probabilities) of roadway-related characteristics 
among casualties with slight injuries and severe casualties. n=20.293 single-vehicle accidents 
with single occupation and personal injury occurring outside the built-up area on the Austrian 
road network between 2012-2019 (3.431 are severe casualties). 
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4.9 Analysis of situation-related variables 

Situation-related variables include the accident's time and weekday, the meteorological 

season, weather, and light conditions. Table 34 illustrates all situation-related variables and 

their characteristics. 

Variable Characteristic 

Time 12 to 6, 6 to 12, 12 to 6, 6 to 12 

Weekday Monday to Thursday, Friday to Sunday 

Meteorological Season spring, summer, autumn, winter 

Weather conditions clear or overcast weather, rain, hail, freezing rain, snow, fog, high wind 

Light conditions 
daylight, dusk or dawn, darkness, artificial light, restricted view by 

vehicle, glare from the sun 

 
Table 34: Situation-related variables. 

 

The analysis of situation-related variables foresees the calculation of variable frequencies, 

conditional and joint probabilities, Fisher’s exact test, the Phi coefficient, and the maximum 

combination value for each variable.  

The analysis of situation-related variables starts with time investigation (see table 35). We can 

see that most accidents occur between 6 a.m. and 12 p.m. The minor accidents occur between 

12 a.m. and 6 a.m., but the relative frequency of severe casualties within this timeframe is 

almost as high as within the other timeframes. The timeframe 12 p.m. to 6 p.m. shows the 

highest probability of a severe or fatal accident. At the same time, it is the only time category 

not showing a significant relationship with severe casualties.  
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Variable X 

 
C: 

Casualties 

SC: 
Severe 

Casualties 

 
 

P (X ∩ SC) 

Fisher's 
exact test 
[Y=severe 
casualty] 

Phi 
coefficient 
[Y=severe 
casualty] 

Comb Max 
[situation-

related 
variables] 

Time (h) 
n n % p ϕ n 

12 a.m. to 6 a.m. 3.367 713 3,51% ,000 ,051 245 

6 a.m. to 12 p.m. 6.283 889 4,38% ,000 -,049 586 

12 p.m. to 6 p.m. 5.915 956 4,71% ,070 -,013 578 

6 p.m. to 12 a.m. 4.728 873 4,30% ,001 ,023 368 

 
Table 35: Single-vehicle accidents with single occupation and personal injury that occurred 
outside the built-up area between 2012 and 2019 broken down by the time of the accident. 
n=20.293 (3.431 are severe casualties). 

 

Figure 39 shows the 95 % confidence intervals for the time categories. The probability ranges 

for these categories comprise the following values: 

• 0 a.m. to 6 a.m.: 3,28 % to 3,74 %, standard error of 0,00 % 

• 6 a.m. to 12 p.m.: 4,13 % to 4,62 %, standard error of 0,13 % 

• 12 p.m. to 6 p.m.: 4,47 % to 4,96 %, standard error 0,13 % 

• 6 p.m. to 12 a.m.: 4,06 % to 4,55, standard error of 0,13 % 

 

 

Figure 39: 95% confidence intervals for the time of the accident. The confidence intervals 
estimate the likelihood of the characteristics and severe casualties to occur (range for joint 
probability). n=20.293 single-vehicle accidents with single occupation and personal injury 
occurring outside the built-up area on the Austrian road network (3.431 are severe casualties). 
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Table 36 summarises weekdays into two categories: Monday to Thursday and Friday to 

Sunday. A severe or fatal accident's probability is almost equal in both categories. Also, both 

categories show a significant relationship with severe casualties. 

 

Variable X 

 
C: 

Casualties 

SC: 
Severe 

Casualties 

 
 

P (X ∩ SC) 

Fisher's 
exact test 
[Y=severe 
casualty] 

Phi 
coefficient 
[Y=severe 
casualty] 

Comb Max 
[situation-

related 
variables] 

Weekday 
n n % p ϕ n 

Mon to Thu 11.131 1.788 8,81% ,000 -,025 586 

Fri to Sun 9.162 1.643 8,10% ,000 ,025 430 

 
Table 36: Single-vehicle accidents with single occupation and personal injury that occurred 
outside the built-up area between 2012 and 2019 broken down by weekday. n=20.293 (3.431 
are severe casualties). 

Figure 40 shows the 95 % confidence intervals for weekdays. The likelihood of a severe or fatal 

accident between Monday and Thursday ranges from 8,53 % to 9,09 %, with a standard error 

of 0,14 %. The likelihood of a severe or fatal accident between Friday and Sunday ranges from 

7,81 % to 8,37 %, with a standard error of 0,14 %. 

 

 

Figure 40: 95% confidence intervals for weekdays. The confidence intervals estimate the 
likelihood of the characteristics and severe casualties to occur (range for joint probability). 
n=20.293 single-vehicle accidents with single occupation and personal injury occurring 
outside the built-up area on the Austrian road network (3.431 are severe casualties). 
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We proceed with the investigation of meteorological seasons. Even if most accidents occur in 

winter, a severe or fatal accident is more likely to occur in summer within the investigated 

sample (see table 37). Furthermore, summer and winter show a significant relationship with 

severe casualties. 

 

Variable X 

 
C: 

Casualties 

SC: 
Severe 

Casualties 

 
 

P (X ∩ SC) 

Fisher's 
exact test 
[Y=severe 
casualty] 

Phi 
coefficient 
[Y=severe 
casualty] 

Comb Max 
[situation-

related 
variables] 

Meteorological Season 
n n % p ϕ n 

Spring 4.279 774 3,81% ,021 ,016 435 

Summer 4.821 896 4,42% ,000 ,025 578 

Autumn 4.802 885 4,36% ,001 ,023 394 

Winter 6.391 876 4,32% ,000 -0,58 586 

 
Table 37: Single-vehicle accidents with single occupation and personal injury that occurred 
outside the built-up area between 2012 and 2019 broken down by meteorological season. 
n=20.293 (3.431 are severe casualties). 

 

Figure 41 illustrates the likelihood of a severe or fatal accident to occur within a meteorological 

season. The 95 % confidence intervals for meteorological seasons show the following values: 

• winter: 4,06 % to 4,56 %, standard error of 0,13 % 

• spring: 3,58 % to 4,05 %, standard error of 0,12 % 

• summer: 4,17 % to 4,68 %, standard error of 0,13 % 

• autumn: 4,10 % to 4,62 %, standard error of 0,13 % 
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Figure 41: 95% confidence intervals for meteorological seasons. The confidence intervals 
estimate the likelihood of the characteristics and severe casualties to occur (range for joint 
probability). n=20.293 single-vehicle accidents with single occupation and personal injury 
occurring outside the built-up area on the Austrian road network (3.431 are severe casualties). 

 

In table 38, the weather analysis shows that ‘clear or overcast weather’ and ‘snow’ result in a 

significant relationship with severe casualties. Most severe or fatal accidents occur during ‘clear 

or overcast weather’, followed by ‘rain’ and ‘snow’. 

 

Variable X 

 
C: 

Casualties 

SC: 
Severe 

Casualties 

 
 

P (X ∩ SC) 

Fisher's 
exact test 
[Y=severe 
casualty] 

Phi 
coefficient 
[Y=severe 
casualty] 

Comb Max 
[situation-

related 
variables] 

Weather conditions 
n n % p ϕ n 

Clear or overcast 
weather 

15.541 2.797 13,78% ,000 ,053 586 

Rain 3.013 458 2,26% ,007 -,019 110 

Hail, freezing rain 124 17 0,08% ,398 -,007 12 

Snow 1.913 175 0,86% ,000 -,067 147 

Fog 636 102 0,50% ,588 -,004 37 

High wind 377 52 0,26% ,113 -,011 17 

 
Table 38: Single-vehicle accidents with single occupation and personal injury that occurred 
outside the built-up area between 2012 and 2019 broken down by weather conditions. 
n=20.293 (3.431 are severe casualties). 
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Figure 42 shows the 95 % confidence intervals for weather conditions. The likelihood of 

weather characteristics and severe or fatal accidents to occur comprise the following 

probability ranges: 

• fog: 0,40 % to 0,60 %, standard error of 0,05 % 

• high wind: 0,19 % to 0,33 %, standard error of 0,03 % 

• hail: 0,04 % to 0,12 %, standard error of 0,02 % 

• rain: 2,06 % to 2,45 %, standard error of 0,10 % 

• snow: 0,74 % to 0,98 %, standard error of 0,06 % 

 

 

Figure 42: 95% confidence intervals for weather conditions. The confidence intervals estimate 
the likelihood of the characteristics and severe casualties to occur (range for joint probability). 
n=20.293 single-vehicle accidents with single occupation and personal injury occurring 
outside the built-up area on the Austrian road network (3.431 are severe casualties). 

 

As shown in table 39, the analysis of light conditions reveals a significant relationship between 

daylight and severe casualties and darkness and severe casualties. 
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Variable X 

 
C: 

Casualties 

SC: 
Severe 

Casualties 

 
 

P (X ∩ SC) 

Fisher's 
exact test 
[Y=severe 
casualty] 

Phi 
coefficient 
[Y=severe 
casualty] 

Comb Max 
[situation-

related 
variables] 

Light conditions 
n n % p ϕ n 

Daylight 11.546 1.790 8,82% ,000 -,043 586 

Dusk or dawn 1.604 266 1,31% ,753 -,003 111 

Darkness 6.828 1.311 6,46% ,000 ,044 368 

Artificial light 571 93 0,46% ,730 -,003 15 

Restricted view by 
another vehicle 7 0 0,00% ,610 -,008 1 

Glare from the sun 109 24 0,12% ,156 ,010 8 

 
Table 39: Single-vehicle accidents with single occupation and personal injury that occurred 
outside the built-up area between 2012 and 2019 broken down by light conditions. n=20.293 
(3.431 are severe casualties). 

 

Figure 43 illustrates the 95 % confidence intervals for the characteristics ‘daylight’, ‘darkness’ 

and ‘dusk or dawn’. The probability ranges for the three characteristics comprise the following 

values: 

• daylight: 8,53 % to 9,10 %, standard error of 0,14 % 

• dusk or dawn: 1,16 % to 1,47 %, standard error of 0,08 % 

• darkness: 6,20 % to 6,74 %, standard error of 0,14 % 
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Figure 43: 95% confidence intervals for light conditions. The confidence intervals estimate the 
likelihood of the characteristics and severe casualties to occur (range for joint probability). 
n=20.293 single-vehicle accidents with single occupation and personal injury occurring 
outside the built-up area on the Austrian road network (3.431 are severe casualties). 

 

Figure 44 illustrates the share of selected situation-related variables among all casualties and 

severe casualties. Severe casualties hold a higher share for the variables ‘clear and overcast 

weather’, ‘darkness’, ‘Friday to Sunday’, ’6 p.m. to 12 a.m.’, and ‘0 a.m. to 6 a.m.’.  
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Figure 44: Relative frequency (or conditional probabilities) of situation-related variables 
among casualties with slight injuries and severe casualties. n=20.293 single-vehicle accidents 
with single occupation and personal injury occurring outside the built-up area on the Austrian 
road network (3.431 are severe casualties). 
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5. Road traffic accident data analysis II: Logistic 

Regression 

 

Because the target variable severe casualties is a dichotomous or binary variable, we apply 

binary logistic regression (also known as binomial logistic regression) to quantify the 

relationship and the impact of accident-related variables on severe casualties. For this study, 

the benefit of binary logistic regression is twofold: 

• it helps us to exclude accident-related characteristics having no significant 

relationship with our target variable severe casualties; 

• it helps us estimate the impact of an accident-related characteristic on severe 

casualties compared to all investigated accident characteristics. 

For the subsequent pattern recognition procedures, this is essential information to identify 

blackpatterns that 

• exclusively include accident-related characteristics having a significant relationship 

with our target variable severe casualties; 

• can be assessed because of knowing the impact of each included accident-related 

characteristic on the target variable severe casualties. 

In this case, we do not apply binary logistic regression to create a prediction model but to 

retrieve information that will help us to evaluate our detected blackpatterns (see chapter 8). 

This way, we can determine whether there exist blackpatterns, including accident-related 

variables with a relatively high impact on severe casualties.  

First, we apply binary logistic regression separately in our four categories (driver, vehicle, 

roadway and situation). Second, we apply binary logistic regression with all accident-related 

characteristics (i.e., across all four categories). We will then compare and discuss the output of 

both approaches. 
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5.1 Generation of logistic regression models 

Before generating our regression models, we zoom into some core terms in logistic regression 

and substantiate why we choose specific model settings. We will now explain the meaning of  

• odds,  

• logit, 

• odds ratios 

• and log odds ratios. 

To illustrate the meaning of these measures, we will use the following example of our binary 

road traffic accident dataset. Table 40 shows the distribution of severe casualties (y, target 

variable) among drivers who did not apply a safety belt (x, independent variable). 

 

 no safety belt applied 

(x=1) 

safety belt applied 

(x=0) 

total 

 

severe casualty 

(y=1) 

699 

p1=33 % 

2.731 

p2=15 % 

3.430 

17 % 

no severe casualty 

(y=0) 

1.401 

1-p1=66 % 

15.462 

1-p2=85 % 

16.863 

83 % 

total 

 

2.100 

10 % 

18.193 

90 % 

20.293 

100 % 

 
Table 40: 2x2 field table showing the dummy variables “severe casualty” (target variable) and 
“no safety belt applied” (independent variable). n=20.293 single-vehicle accidents with a 
single occupation that occurred on the Austrian road network outside the built-up area 
between 2012 and 2019. 

 

The probability of a severe casualty involving a driver with ‘no safety belt applied’ is 33 %. To 

estimate the odds of a severe or fatal road traffic accident involving a driver with ‘no safety belt 

applied’, we calculate the ratio of the two probabilities (p1/1-p1). Thus, the odds (also referred 

to as chance) of a severe or fatal accident involving a driver with ‘no safety belt applied’ are 

50 %. In comparison, the odds of a severe or fatal accident involving a driver with an applied 

safety belt are 18 %. A logit is the natural algorithm of a chance (p1/1-p1). The logit to be 

involved in a severe or fatal road traffic accident with ‘no safety belt applied’ is -0,69, which we 

retrieve by applying the following formula: 

𝑙𝑜𝑔𝑖𝑡	 = 	𝑙𝑛	 @
𝑝

1 − 𝑝B = 	𝑙𝑛	(𝑜𝑑𝑑𝑠(𝑝)) 
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Thus, we can also describe odds as elogit with e referring to Euler’s number (2,71828).  To better 

understand the behaviour between probability, odds and the logit function, we illustrate p, 1-

p, odds and logit for the value range of p in table 41. 

 

p 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 

1-p 0,90 0,80 0,70 0,60 0,50 0,40 0,30 0,20 0,10 

Odds 0,11 0,25 0,43 0,67 1,00 1,50 2,33 4,00 9,00 

Logit -2,20 -1,39 -0,85 -0,41 0,00 0,41 0,85 1,39 2,20 

 
Table 41: Value range p with corresponding p-1, odds and logit. 

 

The table allows us to draw the following conclusions: 

• Logit is symmetric around 0 (p=0,50). 

• The more extreme the probability p deviates from 0,50, the more the logit changes. 

• For large logits, p approaches 0 and 1, respectively, but without reaching these 

values 

• Therefore, even for very large logits, the probabilities p are always in the bounds of 0 

and 1. 

 
Table 42 now shows probability, odds and logit for our example. 

 

 p odds logit 

no safety belt 

applied 

x=1 

safety belt 

applied 

x=0 

no safety belt 

applied 

x=1 

safety belt 

applied 

x=0 

no safety belt 

applied 

x=1 

safety belt 

applied 

x=0 

severe 

casualty 

y=1 

0,33 

p1 

0,15 

p2 

0,50 

p1/(1-p1) 

0,18 

p2/(1-p2) 

-0,69 

ln(p1/(1-p1)) 

-1,71 

ln(p2/(1-p2)) 

no severe 

casualty 

y=0 

0,66 

1-p1 

0,85 

1-p2 

2,00 

(1-p1)/p1 

5,67 

(1-p2)/p2 

0,69 

ln((1-p1)/p1) 

-0,37 

ln((1-p1)/p1) 

 
Table 42: Probability, odds and logit. 
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Odds ratio refers to the quotient of two odds ((p1/1-p1)/ (p2/1-p2)). Thus, the odds ratio of a 

severe or fatal road traffic accident involving a driver with ‘no safety belt applied’ is 2,78 when 

considering our reference group as drivers with ‘no safety belt applied’. Log odds ratio or 

ln(odds ratio) refers to the natural algorithm of the odds ratio. Table 43 illustrates the odds 

ratio and log odds ratio four our example. 

 

 
odds ratio log odds ratio 

no safety belt applied 

(x=1) 

safety belt applied 

(x=0) 

no safety belt applied 

(x=1) 

safety belt applied 

(x=0) 

severe 

casualty 

(y=1) 

2,78 

p1/(1-p1) / p2/(1-p2) 

0,36 

p2/(1-p2) / p1/(1-p1) 

1,02 

ln(p1/(1-p1) / p2/(1-p2) 

-1,02 

ln(p2/(1-p2) / p1/(1-p1)) 

no severe 

casualty 

(y=0) 

0,35 

(1-p1)/p1 / (1-p2)/p2 

 

2,84 

(1-p2)/p2 / (1-p1)/p1 

-1,05 

ln((1-p1)/p1 / (1-p2)/p2) 

1,04 

ln((1-p2)/p2 / (1-p1)/p1) 

 
Table 43: Odds ratio and log odds ratio. 

 

Logistic regression 

To apply binomial logistic model regression (also known as binary logistic regression), we use 

ln
𝜋(𝑥)

1 − 𝜋(𝑥) 	= 	𝛽* +	𝛽+	 ×	𝑥+	+	. . . +	𝛽,	 ×	𝑥, 

where: 

ln -($)
+%-($)

    … target variable (logit) 

𝑥+	. . .		𝑥,   … independent variables x1 … xk 

𝛽*	. . .		𝛽,  … regression coefficients 

 

In our example, we illustrate the formula for binomial logistic regression (see table 44). 
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 no safety belt applied 

x=1 

safety belt applied 

x=0 

severe casualty 

y=1 
𝜋(1) 	= 	

𝑒𝛽0+	𝛽1	
1 +	𝑒𝛽0+	𝛽1	

 𝜋(0) 	= 	
𝑒𝛽0

1 +	𝑒𝛽0
 

no severe casualty 

y= 0 
1 − 𝜋(1) 	= 	

1
1 +	𝑒𝛽0+	𝛽1	

 1 − 𝜋(0) 	= 	
1

1 +	𝑒𝛽0
 

 
Table 44: Binomial logistic regression with a binary independent variable x and a binary 

target variable y. 

 

Thus, we can describe the logistic distribution as 

𝜋(𝑥) 	= 	
𝑒'!(	'"	×	$"('&	×	$&

1 +	𝑒'!(	'"	×	$"('&	×	$& 

where: 

π(x) = p(y = 1)   … probability for y = 1:  

e   … Euler’s number (basis of the natural algorithm) 

𝑥+	. . .		𝑥,   … independent variables x1 … xk (predictor variables) 

𝛽*	. . .		𝛽,  … regression coefficients 

 

Dependent variable (y, target variable) 

We use binary logistic regression to describe the relationship and impact of accident-related 

variables on our target variable severe casualties. The target variable is defined as follows: 

• y=1: probability to observe a severe casualty among single-vehicle accidents with 

single occupation and personal injury on the Austrian road network outside the built-

up area 

• y=0: probability to observe no severe casualty among single-vehicle accidents with 

single occupation and personal injury on the Austrian road network outside the built-

up area 
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Independent variables (x1,…, xk predictor variables) 

Our model exclusively works with dummy variables representing detailed information on 

accident-related characteristics. In total, we work with 158 accident-describing characteristics. 

The dummy variables are defined as follows: 

• x=1:  characteristic is present 

• x=0: characteristic is not present 

 

Regression coefficient β 

The regression coefficient β is the logarithm of the odds ratio, eβ represents the odds ratio. The 

maximum likelihood method defines the regression coefficient. We will not discuss maximum 

likelihood in detail in this thesis. 

 

Exp(β) 

Exp(β) represents the odds ratio for a one-unit increase in xk. Thus, if we get an exp(β)-value of 

6,012, for example, it indicates that a one-unit change in the variable corresponding to xk will 

multiply the relative risk of severe casualties (compared to the base outcome) by 6.012. 

 

Stepwise variable selection with Likelihood Ratio 

We estimate our logistic regression model using the stepwise variable selection method 

forward selection (Likelihood Ratio). Stepwise regression appears helpful for heuristic research 

approaches (i.e., we do not have a specific hypothesis which accident-related variable affects 

our target variable severe casualties).  

The stepwise variable selection process focuses on finding the best model/equation when 

working with many variables (in our case, 158 variables in total). These variables will invariably 

have patterns of overlap of information about Y, our dependent variable severe casualties, 

which are difficult to see and understand. Stepwise regression results in a model/equation 

consisting of significant variables only. Also, the model ensures not to miss a significant 

variable.  
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Regression model evaluation 

In logistic regression, an equivalent to R2 that we know from linear regression does not exist. 

There exist various pseudo R2 as measures of fit. Their interpretation requires caution as 

pseudo R2 in logistic regression do not mean the same as R2 in linear regression (where we 

estimate the model with a least-squares estimator). Hosmer and Lemeshow recommend not to 

use pseudo R2 to evaluate logistic regression models. They argue that in the case of logistic 

regression, the measure of fit should strictly focus on comparing observed and predicted 

values from the fitted model. We take up upon their recommendation and use Hosmer-

Lemeshow goodness-of-fit test. The Hosmer-Lemeshow test divides the sample into 

subgroups and checks the differences between observed and expected values—the smaller 

the difference, the better the model fit. Therefore, we are looking for a confirmation of the H0. 

The H0 states that the observed and expected proportions are the same across all samples. 

Therefore, we require a non-significant result for the Hosmer-Lemeshow test. 
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5.2 Logistic regression with driver-related variables 

This chapter analyses the relationship and impact of driver-related characteristics on our 

dichotomous target variable severe casualties (0=no severe casualty, 1=severe casualty). 

Driver-related predictor variables comprise 

• sex, 

• age classes, 

• impairments, 

• type of driving licence, 

• manoeuvres before the accident, and 

• safety settings 

with 56 characteristics (see chapter 4.6). We integrate each characteristic as dummy variables 

into our model (0: characteristic is not present, 1: characteristic is present). The regression 

model performs a 15-step variable selection process. Table 45 illustrates the model results 

(=step 15). The Hosmer-Lemeshow test results in p=0,360 and indicates no evidence of poor 

model fit.  

The estimated model shows that the characteristic ‘no safety belt applied’ appears to have the 

highest impact on severe casualties (exp(β)=5,14), followed by ‘hitting an obstacle on the road’, 

‘sudden braking’, ‘male drivers’, and ‘skidding/drifting’. The risk to observe a severe or fatal 

accident decreases with ‘age class 65+’ or ‘when hitting the guard rail’. 
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Variable 

regression 

coefficient 

β 

standard 

error 

SEM 
Sig. 

p exp(β)  
sudden braking 0,670 0,320 0,037 1,953 

skidding/drifting 0,164 0,076 0,031 1,178 

hitting a tree 0,510 0,073 0,000 1,666 

hitting an obstacle on the road 1,180 0,423 0,005 3,254 

hitting the guard rail -0,306 0,086 0,000 0,736 

age class 16 to 18 0,714 0,104 0,000 2,043 

age class 19 to 24 0,636 0,060 0,000 1,889 

age class 25 to 34 0,415 0,060 0,000 1,514 

age class 35 to 44 0,247 0,068 0,000 1,280 

age class 65+ -0,128 0,069 0,066 0,880 

male driver 0,648 0,043 0,000 1,912 

probationary driving licence 0,163 0,076 0,033 1,177 

alcohol 0,410 0,059 0,000 1,507 

no safety belt applied 1,638 0,060 0,000 5,143 

hit and run -0,431 0,158 0,006 0,650 

constant -6,221 0,576 0,000 0,002 

 
Table 45: Driver-related logistic regression model. Input data: 20.293 single-vehicle accidents 
with single occupation occurring outside the built-up area on the Austrian road network 
between 2012-2019. The dataset includes 56 driver-related characteristics as dummy variables 
(0=characteristic is not present, 1=characteristic is present). The binary target variable is severe 
casualties (0=no severe casualty, 1=severe casualty). 

 

 

 

  



111 
 

Table 46 shows the characteristics excluded from the driver-related regression model. Unless 

the characteristic has a comb max value of over 50 (see analysis I), we will not integrate these 

variables into further analyses (i.e., pattern recognition with Bayesian networks and pattern 

recognition with the PATTERMAX method). For the generation of the decision trees, we will 

integrate all characteristics (as we will compare the decision tree outcomes with the logistic 

regression results). 

 

Variable Excluded characteristics 

Sex female 

Age Class 45 to 54, 55 to 64, 65+ 

Driving licence no driving licence 

Impairments distraction, fatigue, health, drugs, medicine, excitation 

Driving manoeuvres speeding, hitting an obstacle next to the road, misconduct by a pedestrian, 

overtaking, cutting curves, changing lanes, inadequate safety distance, 

reverse driving, phoning, turning around, falling from the vehicle, getting 

in the lane, disregarding driving direction, priority violation, driving 

towards the left side of the road, forbidden overtaking, hitting a moving 

vehicle, disregarding driving ban, driving in parallel, opening the vehicle 

door, hitting a stationary vehicle, wrong-way driver, disregarding red light, 

dangerous stopping and parking, disregarding turning ban, missing 

indication of direction change, driving against one way, driving without 

mandatory light 

Safety settings no safety belt applied 

 
Table 46: Variables excluded from the driver-related regression model. 

 

Excluded variables that show a comb max value of over 50 are speeding, distraction, fatigue, 

female driver, age class 45 to 54, age class 55 to 64 and age class 65+ (see chapter 4.6). We 

will additionally integrate these variables in our pattern recognition process. We include these 

variables because of their high maximum combination value. This value indicates that the 

respective variable or characteristic often occurs in a single pattern. Therefore, it might be an 

essential variable or characteristic for blackpattern detection. 
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5.3 Logistic regression with vehicle-related variables 

We proceed with the estimation of a vehicle-related logistic regression model. Vehicle-related 

variables include 

• kilometrage (km), 

• engine power (kW), 

• the vehicle colour, and 

• vehicle safety settings  

with 32 detailed characteristics (see chapter 4.7), which we include as dummy variables in our 

model (0=characteristic is not present, 1=characteristic is present).  The model estimates the 

impact of these variables on our binary target variable severe casualties (0=no severe casualty, 

1=severe casualty). Stepwise variable selection with Likelihood Ratio performs nine steps to 

estimate the model. Table 47 presents the estimated driver-related regression model. The 

Hosmer-Lemeshow goodness-of-fit test shows the good model fit with p=0,795. The 

regression model assigns ‘insufficient load security’ (exp(β)=4,684), ‘vehicle fire’ 

(exp(β)=5,664), and ‘airbag not deployed’ (exp(β)=2,403) with the highest impact on severe 

casualties. Engine power of ‘24-90kW’ appears to reduce the risk of severe casualties. 

 

Variable 

regression 

coefficient 

β 

standard 

error 

SEM 

Sig. 

p exp(β) 

engine power 24-90 kW -0,118 0,087 0,175 0,889 

engine power 90-110 kW 0,243 0,100 0,016 1,275 

engine power 110+ kW 0,306 0,010 0,002 1,358 

insufficient vehicle security 1,544 0,527 0,003 4,684 

vehicle fire 1,734 0,486 0,000 5,664 

airbag not deployed 0,877 0,043 0,000 2,403 

vehicle colour: green 0,349 0,0734 0,000 1,418 

constant -2,178 0,090 0,000 0,113 

 
Table 47: Vehicle-related logistic regression model. Input data: 20.293 single-vehicle 
accidents with single occupation occurring outside the built-up area on the Austrian road 
network between 2012-2019. The dataset includes 32 vehicle-related characteristics as 
dummy variables (0=characteristic is not present, 1=characteristic is present). The binary target 
variable is severe casualties (0=no severe casualty, 1=severe casualty). 
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The estimated model excludes the following vehicle-related characteristics. Unless a 

characteristic has a comb max value of over 50 (see analysis I), we will not integrate these 

characteristics into further analyses (i.e., pattern recognition with Bayesian networks and 

pattern recognition with the PATTERMAX method). For the generation of the decision trees, 

we will integrate all characteristics (as we will compare the decision tree outcomes with the 

outcomes of logistic regression). 

 

Variable Excluded characteristics 

Engine power (kW) 0-24 

Kilometrage (km) 
0 to 15.000, 15.000 to 75.000, 75.000 to 100.000, 100.000 to 150.000, 

150.000 to 200.000 

Vehicle colour 

 

beige, blue, brown, bronze, dark, yellow, gold, grey, bright, orange, red, 

black, silver, purple, white, others 

Vehicle safety settings insufficient load security, technical defects, airbag deployed 

Table 48: Variables excluded from the vehicle-related regression model. 

 

Based on the maximum combination value (see chapter 4.7), we additionally integrate the 

following characteristics in the pattern recognition process (Bayesian networks and 

PATTERMAX-method): kilometrage of 15.000-75.000km, kilometrage of 150.000-200.000km 

and the vehicle colours blue, brown, grey, red, black, silver and white. We include these 

variables because of their high maximum combination value. This value indicates that the 

respective variable or characteristic often occurs in a single pattern. Therefore, it might be an 

essential variable or characteristic for blackpattern detection. 
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5.4 Logistic regression with roadway-related variables 

The generation of a roadway-related logistic regression model involves the following roadway-

related variables: 

• speed limit, 

• road type, 

• road characteristics, 

• road condition, and 

• traffic lights. 

These variables consist of 50 detailed characteristics. We will integrate these characteristics as 

dummy variables (0=characteristic is not present, 1=characteristic is present) into our roadway-

related regression model. The model performs a 12-step variable selection process based on 

the Likelihood Ratio. The Hosmer-Lemeshow-goodness-of-fit test results in a p < 0,05 in all 

steps (step 12: p=0,001). Thus, the roadway-related logistic regression model appears to be 

subject to randomness (i.e., the observed values deviate from the expected values). Therefore, 

the analysis of roadway-related variables does not allow us to conclude on the impact of these 

variables on severe casualties. However, we include roadway-related variables into our overall 

regression model (see chapter 5.6) and see if this model includes statistically sound roadway-

related variables. 
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5.5 Logistic regression with situation-related variables 

Situation-related variables include the following predictor variables 

• time, 

• weekday, 

• meteorological season, 

• weather conditions, and 

• light conditions 

and their characteristics. The regression model estimates the relationship and impact of 22 

situation-related dummy characteristics (0=characteristic is not present, 1=characteristic is 

present) on the target variable severe casualties (0=no severe casualty, 1=severe casualty). The 

model performs stepwise variable selection based on Likelihood Ratio with eight steps in total.   

Table 49 represents the estimated situation-related regression model (i.e., the result of step 

eight). The Hosmer-Lemeshow goodness-of-fit test results in p=0,883, indicating that the 

estimated model shows a good fit. Weekdays ‘Monday to Thursday’ appear to decrease the 

risk of observing a severe or fatal road traffic accident. ‘Snow’ (exp(β)=1,921), the time between 

‘0 a.m. and 6 a.m.’ (exp(β)=1,415), and ‘rain’ (exp(β)=1,270) appear to have the positive impact 

on severe casualties when comparing situation-related characteristics. 

 

Variable 

regression 

coefficient 

β 

standard 

error 

SEM 

Sig. 

p exp(β) 

12 a.m. to 6 a.m. 0,347 0,072 0,000 1,415 

12 p.m. to 6 p.m. 0,119 0,051 0,019 1,126 

6 p.m. to 12 a.m. 0,199 0,064 0,002 1,220 

Monday to Thursday -0,077 0,038 0,042 0,926 

winter 0,271 0,046 0,000 1,312 

rain 0,239 0,055 0,000 1,270 

snow 0,653 0,085 0,000 1,921 

darkness 0,130 0,058 0,024 1,138 

Constants -2,744 0,106 0,000 0,064 

 
Table 49: Situation-related logistic regression model. Input data: 20.293 single-vehicle 
accidents with single occupation occurring outside the built-up area on the Austrian road 
network between 2012-2019. The dataset includes 22 situation-related characteristics as 
dummy variables (0=characteristic is not present, 1=characteristic is present). The binary target 
variable is severe casualties (0=no severe casualty, 1=severe casualty). 
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Our estimated model excludes the following situation-related characteristics (see table 50). 

Variable Excluded characteristics 

Time 6 to 12 

Weekday Friday to Sunday 

Meteorological Season spring, summer, autumn 

Weather conditions clear or overcast weather, hail, freezing rain, fog, high wind 

Light conditions 
daylight, dusk or dawn, artificial light, restricted view by vehicle, glare 

from the sun 

 
Table 50: Characteristics excluded from the situation-related logistic regression model. 

 

Unless these characteristics do not result in a comb value of over 50 (see chapter 4.9), we 

dismiss these characteristics for the pattern recognition process (i.e., Bayesian networks and 

PATTERMAX-method). This applies to the following characteristics: time between 6 a.m. and 

12 p.m., Friday to Sunday, spring, summer, winter, clear or overcast weather, daylight and dusk 

or dawn. We include these variables because of their high maximum combination value. This 

value indicates that the respective variable or characteristic often occurs in a single pattern. 

Therefore, it might be an essential variable or characteristic for blackpattern detection. For the 

generation of the situation-related decision tree, we will integrate all 22 situation-related 

characteristics as we want to compare the outcomes of our logistic regression model with the 

outcome of the decision tree. 
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5.6 Logistic regression with all accident-related variables 

The last part of the logistic regression chapter foresees the estimation of an overall logistic 

regression model. This model integrates 158 accident-describing characteristics from four 

categories (driver, vehicle, roadway and situation) as dummy variables. 

The model performs a 34 -step variable selection process based on the Likelihood Ratio. The 

final model (step 34) results in p=0,952 for the Hosmer-Lemeshow goodness-of-fit test, which 

indicates that the model shows a good fit. Table 51 shows the estimated overall logistic 

regression model. We can see that the variables ‘no safety belt applied’ (exp(β)=5,015), 

‘gallery’ (exp(β)=4,583), ‘hitting an obstacle on the road’ (exp(β)=3,394), ‘airbag not deployed’ 

(exp(β)=2,223), ‘age class 16 to 18’, exp(β)=2,317), and ‘bridge’ (exp(β)=2,166) have the 

highest impact on severe casualties. Even if some of these characteristics occur very rarely, they 

show a relatively high probability for a severe casualty in the case of their occurrence. ‘Speed 

limit 50 km/h’ and ‘hitting a guard rail’ appear to decrease the probability of severe casualties. 

 

Variable 

regression 

coefficient 

β 

standard 

error 

SEM 

Sig. 

p exp(β) 

0 a.m. to 6 a.m. 0,307 0,058 0 1,359 

speed limit 50km/h -0,329 0,144 0,022 0,719 

speed limit 100km/h 0,114 0,046 0,013 1,12 

intersection 0,45 0,148 0,002 1,569 

curve 0,18 0,043 0 1,198 

bridge 0,773 0,197 0 2,166 

gallery 1,522 0,589 0,01 4,583 

tunnel 0,515 0,258 0,046 1,674 

one-way 0,507 0,219 0,02 1,66 

dry road 0,232 0,047 0 1,261 

wintry conditions 0,38 0,07 0 1,462 

 
Table 51: Overall logistic regression model. Input data: 20.293 single-vehicle accidents with 
single occupation occurring outside the built-up area on the Austrian road network between 
2012-2019. The dataset consists of 160 accident-describing characteristics, which we integrate 
as dummy variables (0=characteristic is not present, 1=characteristic is present) into the model. 
The binary target variable is severe casualties (0=no severe casualty, 1=severe casualty). 
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Variable 

regression 

coefficient 

β 

standard 

error 

SEM 

Sig. 

p exp(β) 

darkness 0,165 0,049 0,001 1,18 

county road 0,247 0,062 0 1,28 

other road 0,397 0,082 0 1,487 

engine power 24-90 kW 0,175 0,046 0 1,192 

sudden braking 0,693 0,324 0,032 2 

hitting a tree 0,365 0,075 0 1,441 

hitting an obstacle on the road 1,222 0,426 0,004 3,394 

hitting a guard rail -0,313 0,091 0,001 0,731 

vehicle fire 1,394 0,541 0,01 4,029 

hit and run 0,552 0,161 0,001 1,737 

age class 16 to 18 0,84 0,104 0 2,317 

age class 19 to 24 0,743 0,057 0 2,101 

age class 25 to 34 0,492 0,057 0 1,635 

age class 35 to 44 0,308 0,065 0 1,361 

drifting left 0,147 0,041 0 1,158 

male driver 0,491 0,045 0 1,634 

probationary driving licence 0,166 0,078 0,033 1,181 

alcohol 0,65 0,062 0 1,916 

no safety belt applied 1,612 0,062 0 5,015 

airbag not deployed 0,803 0,046 0 2,233 

vehicle colour: green 0,275 0,078 0 1,317 

constant -9,285 0,611 0 0 

 
Continuation of table 51: Overall logistic regression model. Input data: 20.293 single-vehicle 
accidents with single occupation occurring outside the built-up area on the Austrian road 
network between 2012-2019. The dataset consists of 160 accident-describing characteristics, 
which we integrate as dummy variables (0=characteristic is not present, 1=characteristic is 
present) into the model. The binary target variable is severe casualties (0=no severe casualty, 
1=severe casualty). 
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Table 52 shows the variables excluded from the overall logistic regression model. 

Variable Excluded characteristics 

Sex female driver 

Age class 45 to 54, 55 to 64, 65+ 

Time 6 to 12, 12 to 18, 18 to 24 

Weekday Monday to Thursday, Friday to Sunday 

Meteorological Season spring, summer, autumn, winter 

Weather conditions clear or overcast weather, hail, freezing rain, fog, high wind, snow 

Light conditions 
daylight, dusk or dawn, artificial light, restricted view by vehicle, glare from the 

sun 

Speed limit driving ban, 5, 10, 20, 30, 40, 60, 70, 80, 90, 110, 120, 130 

Road characteristics 

roundabout, traffic light in operation, straight road, narrow road, deceleration 

lane, acceleration lane, cycle path, pedestrian and cycle path, entry or exit, 

banquet, secondary lane, hard shoulder, parking lane, rest area, underpass, 

traffic island, tram or bus, station, middle separation, construction site, 

crosswalk 

Road conditions wet road, sand or grit on the road, other road condition 

Road type Highway, expressway 

Engine power (kW) 0-24, 90-110, 110+ 

Kilometrage (km) 0-15.000, 15.000-75.000, 100.000-150.000, 150.000-200.000 

Driving manoeuvre 

getting in the lane, reverse driving, overtaking, turning around, changing 

lanes, driving in parallel, cutting curves, wrong-way driver, disregarding 

driving direction, disregarding driving ban, forbidden overtaking, speeding, 

disregarding red light, priority violation, phoning, inadequate safety distance, 

skidding/drifting, opening the vehicle door, misconduct by a pedestrian, 

hitting an obstacle next to the road, hitting a moving vehicle, hitting a 

stationary vehicle, drifting right 

Vehicle safety settings insufficient vehicle security, insufficient load security, technical defects 

Impairment distraction, drugs, medicines, fatigue, excitation, health 

Driving licence no driving licence 

Vehicle colour 
beige, blue, brown, bronze, dark, yellow, golden, grey, bright, orange, red, 

black, silver, violet, white 

 
 
Table 52: Variables excluded from the overall logistic regression model based on a stepwise 
variable selection with Likelihood Ratio.  
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6. Road traffic accident data analysis III: Decision Trees 

 

In addition to binary logistic regression, we estimate decision trees to detect accident-related 

characteristics that appear to impact our dependent variable severe casualties. We are 

interested in comparing the outcome of binary logistic regression with the outcomes of 

decision trees. Even if decision trees do not analyse accident-related characteristics in such 

detail as logistic regression, we are curious to see whether the identified characteristics will be 

similar to those detected in our regression models. As in the previous chapter, we create a 

decision tree for each accident-describing category (driver, vehicle, roadway, situation). 

Afterwards, we will generate a decision tree including all the variables of the four categories. 

To grow the decision trees, we apply the CHAID-algorithm (Chi-square Automatic Interaction 

Detector). There exist several reasons to apply this algorithm, which we discuss in the following 

chapter. 

 

6.1 Generation of decision trees 

The CHAID-algorithm discovers the relationships between our accident-describing variables 

and their respective characteristics. Chi-square is the metric to detect the significance of a 

characteristic. This approach extends analysis part I, where we applied Fisher’s Exact Test to 

estimate the relationship between accident-related variables and the target variable severe 

casualties. As in the previous analyses, the entire dataset consists of binary accident-related 

characteristics (0=characteristic is not present, 1=characteristic is present). We define severe 

casualties as our target variable (0=no severe casualty, 1=severe casualty). The CHAID-

algorithm expects the target variable to be categorical. 

 

The formula of chi-squared testing is: 

√((y – y’)2 / y’) 

where: 

y  … the actual value 

y’  … the expected value 
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CHAID generates a 2x2 field table for each accident-related variable with the target variable 

severe casualties. We use the same example as in the logistic regression chapter (chapter 5) to 

illustrate the logic behind the CHAID-algorithm. Table 53 shows the observed values for the 

characteristics ‘no safety belt applied’ (independent variable) and severe 

casualties’(dependent variable). Table 54 shows the respective expected values. 

 

 no safety belt applied 

(x=1) 

safety belt applied 

(x=0) 

total 

 

severe 

casualty 

(y=1) 

699 

p1=33 % 

2.731 

p2=15 % 

3.430 

17 % 

no severe 

casualty 

(y=0) 

1.401 

1-p1=66 % 

15.462 

1-p2=85 % 

16.863 

83 % 

total 

 

2.100 

10 % 

18.193 

90 % 

20.293 

100 % 

 
Table 53: 2x2 field table showing the observed values for severe casualty (target variable) and 
’no safety belt applied’ (independent variable). n=20.293 single-vehicle accidents with a single 
occupation that occurred on the Austrian road network outside the built-up area between 2012 
and 2019. 

 

 no safety belt applied 

(x=1) 

safety belt applied 

(x=0) 

total 

 

severe 

casualty 

(y=1) 

355 

p1=17 % 

3.075 

p2=17 % 

3.430 

17 % 

no severe 

casualty 

(y=0) 

1.745 

1-p1=83 % 

15.118 

1-p2=83 % 

16.863 

83 % 

total 

 

2.100 

10 % 

18.193 

90 % 

20.293 

100 % 

 
Table 54: 2x2 field table showing the expected values for severe casualty (target variable) and 
‘no safety belt applied’ (independent variable). n=20.293 single-vehicle accidents with a single 
occupation that occurred on the Austrian road network outside the built-up area between 2012 
and 2019. 
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The shown example results in a chi-square value of 1.165,52 and p=0,000. 

As we have 158 accident-describing characteristics, CHAID creates 158 2x2 field tables and 

calculates each table's chi-square value. The table with the maximum chi-square value 

becomes the root node. In our case, only two decisions can emanate from this node: 

0=characteristic is not present (subset 1), and 1=characteristic is present (subset 2). Both 

subsets contain different proportions of severe casualties. The target of the CHAID algorithm 

is to create sub informational datasets having a single decision such that severe casualties 

exclusively consist of ones or zeros. Thus, the CHAID algorithm continues to calculate chi-

square values and decision nodes for each data subset until the sub informational datasets 

exclusively include the same decision (0 or 1) for the target variable.  

As we will see in chapters 6.2 and 6.6, our illustrated example will result in the maximum chi-

square value among driver-related characteristics and all accident-describing characteristics. 

It will become the root node in both cases. However, the CHAID-algorithm mainly selects those 

variables which also have a high impact on the target variable (exp(b) in the logistic regression 

model. 

 

6.2 Decision tree with driver-related variables 

The driver-related decision tree works with 54 driver-related characteristics representing 

dummy variables. The dichotomous target variable is severe casualties (0=no severe casualty, 

1= severe casualty). Figure 45 shows the driver-related decision tree we generated with the 

CHAID-algorithm. 
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Figure 45: Driver-related decision tree. Input data: n=20.293 single-vehicle accidents with 
single occupation and personal injury occurring outside the built-up area on the Austrian road 
network (3.431 are severe casualties). 

 

The root note is ‘no safety belt applied’ results in a Chi-square value of 1.165,52 and correlates 

with severe casualties. If ‘no safety belt applied’ is true, the characteristic showing the highest 

Chi-square value among the subset is ‘alcohol’. The joint probability of a severe or fatal 

accident with ‘no safety belt applied’ and alcohol’ is 2 % (total: 499). If ‘alcohol’ does not apply, 

the next decision node leads us to ‘female driver’. The joint probability of a severe or fatal 

accident with ‘no safety belt applied’ and ‘female driver’ is 3 % (total: 579). Furthermore, the 

decision tree relates ‘male driver’ with ‘age class 19 to 24’. The joint probability of this variable 

combination with severe casualties is 9 % (total: 1.865). If neither ‘no safety belt applied’ nor 

‘male driver’ is valid, the decision tree leads us to the decision node ‘age class 65+’. The joint 

probability for a severe or fatal accident and a driver above 65 years is 0,6 % (total: 118). 

Compared with the outcomes from binary logistic regression, we can see that the driver-

related decision tree does not integrate any characteristic that would not be part of the 
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regression model. However, we can see relations among the presented characteristics within 

the decision tree. On the other side, the logistic regression model provides information on the 

impact of a driver-related characteristic to increase severe casualties.  

 

6.3 Decision tree with vehicle-related variables 

The vehicle-related decision tree works with 32 vehicle-related characteristics representing 

dummy variables. The dichotomous target variable is severe casualties (0=no severe casualty, 

1= severe casualty). Figure 46 shows the vehicle-related decision tree we generated with the 

CHAID-algorithm. The root node of the vehicle-related decision tree is ‘airbag not deployed’. 

In the logistic regression model, ‘airbag not deployed’ also showed a high impact on severe 

casualties. Additionally, the vehicle-related decision tree selects engine power ’24-90kW’, and 

the vehicle colours green and grey. 

 
 
Figure 46: Vehicle-related decision tree. Input data: n=20.293 single-vehicle accidents with 
single occupation and personal injury occurring outside the built-up area on the Austrian road 
network (3.431 are severe casualties). 
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6.4 Decision tree with roadway-related variables 

The roadway-related decision tree works with 50 roadway-related characteristics representing 

dummy variables. The dichotomous target variable is severe casualties (0=no severe casualty, 

1= severe casualty). Figure 47 shows the roadway-related decision tree we generated with the 

CHAID-algorithm. 

The root node is ‘wintry conditions’. The probability of a severe casualty in wintry conditions is 

19 % (total: 3.771). If ‘wintry conditions’ apply, the tree shows a direct connection to ‘other 

roads’. The resulting joint probability is 3 %. If ‘other road’ is not valid, the decision tree leads 

us to the decision node ‘straight road’. Thus, the joint probability of a severe casualty with 

‘wintry conditions’ and ‘straight road’ is 0,6 % (total: 112). If the root node ‘wintry conditions’ 

does not apply, the decision tree generates a link to ‘wet road’. The joint probability of a severe 

casualty with ‘wet roads’ is 9,2 % (total: 1.865). If ‘wet road’ is valid, the decision tree links to 

‘curve’. The joint probability of a severe casualty and ‘wet road’ and ‘curve’ is 18 % (total: 362). 

If neither the root node ‘wintry conditions’ nor the decision node ‘wet road’ is true, the decision 

tree links to ‘bridge’. The probability of a severe casualty and a bridge is 0,1 % (total: 23). Even 

if some characteristics occur very rarely (for example, ‘bridge’), they show a relatively high 

probability for a severe casualty in case of their occurrence. For example, 20 % of accidents 

occurring on a bridge resulted in a severe or a fatal road traffic accident. 

The roadway-related logistic regression model could not generate a significant model. 

Therefore, we cannot compare the outcomes of the decision tree with those of logistic 

regression. 
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Figure 47: Roadway-related decision tree. Input data: n=20.293 single-vehicle accidents with 
single occupation and personal injury occurring outside the built-up area on the Austrian road 
network (3.431 are severe casualties).  
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6.5 Decision tree with situation-related variables 

The situation-related decision tree works with 22 characteristics representing dummy 

variables. The dichotomous target variable is severe casualties (0=no severe casualty, 1= 

severe casualty). Figure 48 shows the situation-related decision tree we generated with the 

CHAID-algorithm. 

The situation-related decision tree shows ‘snow’ as the root node. The probability of a severe 

or fatal road traffic accident in snowy conditions is 1 % (total: 191). If ‘snow’ is true, the tree links 

to the weekdays ‘Monday to Thursday’. The joint probability of a severe or fatal accident in 

snowy conditions and on weekdays between Monday and Thursday is 0,5 %. If ‘Monday to 

Thursday’ is not valid, the decision tree leads us to the decision node ‘winter’. Thus, the joint 

probability of a severe or fatal accident in snowy conditions and winter is 0,3 % (total: 63). If the 

root node ‘snow’ does not apply, the decision tree leads us to the decision node ‘darkness’. 

The probability of a severe or fatal accident in ‘darkness’ is 10 % (total: 2.018). ‘Darkness’ shows 

a connection to ‘rain’. The joint probability of a severe or fatal road traffic accident in ‘darkness’ 

and ‘rain’ is 1 % (total: 275). If neither the root node ‘snow’ nor ‘darkness’ apply, the decision 

tree leads us to ‘winter’. The probability of a severe or fatal accident in winter is 2 % (total: 353). 

Within the logistic regression model, ‘snow’, ‘winter’, ‘rain’, and ‘darkness’ represent variables 

with a high impact on severe casualties. 
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Figure 48: Situation-related decision tree. Input data: n=20.293 single-vehicle accidents with 
single occupation and personal injury occurring outside the built-up area on the Austrian road 
network (3.431 are severe casualties).  
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6.6 Decision tree with all accident-related variables 

For the decision tree, we include all accident-describing characteristics as dummy variables.  

Table 55 shows the characteristics to be integrated into the overall decision tree.  

Category Type of variable Characteristics 

Driver Content variable Sex: male, female 

Age class: 16 to 18, 19 to 24, 25 to 34, 35 to 44, 45 to 54, 55 to 64, 

65+ 

Driving licence type: probationary driving licence 

Distraction: alcohol, distraction, fatigue 

Driving manoeuvre: speeding, skidding/drifting, hitting a tree, hitting 

an obstacle on the road, hitting a guard rail, sudden braking, hit and 

run 

Safety settings: no safety belt not applied 

Vehicle Content variable Vehicle settings: airbag not deployed 

Roadway Content variable Speed limit: driving ban, 70, 80, 100, 130 

Road characteristics: intersection, curve, middle separation 

Road condition: wet road, wintry conditions, sand or grit on the road 

Road type: highway, expressway, regional road, other roads 

Situation Content variable Weather conditions: rain, snow 

Light conditions: darkness, dusk or dawn 

Time: 0 to 6, 6 to 12, 12 to 18,18 to 24 

Weekday: Monday to Thursday, Friday to Sunday 

Season: Winter, Spring, Summer, Autumn 

 
Table 55: Accident characteristics to generate the overall decision tree. 

 

The resulting overall decision tree shows a condensed picture of accident-describing 

characteristics. Within the overall decision tree (see figure 49), ‘no safety belt applied’ remains 

on the very top as the root node. The probability of a severe or fatal accident including a driver 

with ‘no safety belt applied’ is 3 % (total: 699). If ‘no safety belt applied’ is true, we can see a 

direct connection to ‘alcohol’. The joint probability of a severe or fatal accident including the 

characteristics ‘no safety belt applied’ and ‘alcohol’ is 0,6 % (total: 120). So far, the overall 

decision tree shows the same picture as the driver-related decision tree. If ‘alcohol’ applies, the 

decision tree leads us to the decision node ‘speed limit of 100 km/h’. The resulting joint 

probability of a severe or fatal casualty, ‘no safety belt applied, ‘alcohol’ and ‘speed limit of 

100 km/h’ is 0,2 % (total: 40). If ‘alcohol’ does not apply, the tree leads us to the decision node 

‘airbag not deployed’. The joint probability of a severe or fatal accident, ‘no safety belt applied’ 
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and ‘airbag not deployed’ is 0,8 % (total: 159). If the root node ‘no safety belt applied’ is not 

true, the next decision node represents ‘airbag not deployed’. Among the subset, the 

probability of a severe or fatal accident and ‘airbag not deployed’ is 3 % (total: 629).  If ‘airbag 

not deployed’ is true, we can see a connection to ‘age class 65+’. The resulting joint probability 

of severe casualty, ‘airbag not deployed’ and ‘age class 65+’ is 0,5 % (total: 107). If neither ‘no 

safety belt applied’ nor ‘airbag not deployed’ is true, the decision tree leads us to the decision 

node ‘male driver’. In this case, the probability of a severe or fatal accident including a ‘male 

driver’ is 7 %. 

 
 
Figure 49: Decision tree generated with all accident-describing variables. Input data: n=20.293 
single-vehicle accidents with single occupation and personal injury occurring outside the built-
up area on the Austrian road network (3.431 are severe casualties). 

 

Within the overall logistic regression model, the characteristics ‘no safety belt applied’, 

‘gallery’, ‘hitting an obstacle on the road’, ‘airbag not deployed’, ‘age class 16 to 18’, and 

‘bridge’ showed the most significant impact on severe casualties. Thus, according to both 

approaches, the characteristics ‘no safety belt applied’ and ‘airbag not deployed’ represent 

two key characteristics to increase the risk of a severe casualty. 
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7. Road traffic accident data analysis IV: Bayesian 

networks 

 

Given the random variables x1, …, xn with d values each, the associated probability results in a 

total of dn values. Thus, the required storage capacity and the computational time for 

calculating probabilities grow exponentially with the number of variables. In some cases, 

probability values might be unknown, and their determination is time-consuming. 

In practice, many application problems are highly structured or even overstructured, so that 

the distribution contains a lot of redundancy. The so-called Bayesian networks can reduce 

these (over)structured distributions. Bayesian networks are directed graphs where the nodes 

represent predictor variables (statements) and the edges represent the stochastic 

dependencies between the statements(Dörn, 2017, p. 149).  In our case, we do not use 

Bayesian networks to determine unknown probabilities as we have an empirical and 

representative dataset on road traffic accidents and their outcomes (degree of injury). We 

generate Bayesian networks to detect causal relationships among accident-describing 

characteristics. 

 

7.1 Generation of the Bayesian networks 

The so-called Naïve Bayes Classifier is a simple and commonly used algorithm to generate a 

Bayesian network. Using conditional probabilities, the Naive Bayes Classifier determines which 

class an object belongs to with the most significant probability. Thus, the Naïve Bayes classifier 

is a simple probabilistic classifier based on the Bayes' Theorem. 

The Bayes’ Theorem determines the conditional probability as follows: 

 

𝑃(𝐴	|	𝐵) 	= 	
𝑃	(𝐴	 ∩ 	𝐵)
𝑃	(𝐵) 	=

𝑃(𝐴) 	× 	𝑃	(𝐵	|	𝐴)
𝑃(𝐵)  
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where: 

P (A ∩ B) joint probability of A and B 

P (A | B)  the conditional probability of the event A under the condition that B has           

occurred (a posteriori probability) 

P (B | A)  the conditional probability of the event B under the condition that A has 

occurred 

P(A)   the a priori probability of event A (prior of A) 

P(B)   the a priori probability of event B (prior of A) 

 

Conditional Probability 

P (A | B) stands for the conditional probability of A with given B, or the probability of A under 

the condition of B. Thus, in a random experiment, if event B is known, the possible outcomes 

of the experiment are reduced to B. The joint probability is the connected probability of two 

events. 

 

Independence 

The Naïve Bayes Classifier makes strong independence assumptions. This means that a 

particular feature of a class is independent of every other feature of the class. 

Two events A and B are independent if both A and B have positive probabilities and if  

P (A | B) = P(A) and P(B | A) = P(B) 

 

Example 

We will explain the Bayesian network approach with the following example: When 

investigating historical single-vehicle road traffic accidents with single occupation and outside 

the built-up area, what is the probability that the accident results in a severe or fatal accident 

and that the driver is between 19 and 24 years old? 

Between 2012-2019, 3.430 severe single-vehicle accidents with single occupation occurred 

outside the built-up area in Austria. 23,50% of these accidents involve 19 to 24 years old drivers 

(n = 806). In total, 20.293 severe single-vehicle accidents with single occupation occurred 

outside the built-up area in Austria within this period. 
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So, we have the following events: 

SC: it is a severe casualty 

AC: the driver is between 19 to 24 years old 

 

The probability of a randomly selected accident to be a severe or fatal accident is: 

P	(SC) 	=
3.430
20.293 = 	0,1690 

The probability of a 19 to 24-year-old driver and a severe or fatal accident is 23,50 %, which 

corresponds to the following conditional probability: 

P (AC | SC) = 0,2350 

With the following formula, we calculate the probability that the involved driver is between 19 

and 24 years old: 

𝑃	(𝐴𝐶	|	𝑆𝐶) 	= 	
P	(AC ∩ SC)	
P	(SC)  

Let us put in the values: 

0,2350 = 	
P	(AC ∩ SC)
0,1690  

Result: 

P (AC ∩ SC) = 0,0397 

The chance of a severe or fatal accident with a driver between 19 and 24 years old is 3,97%. 

We will now generate a Bayesian network for each category (driver, vehicle, roadway, situation, 

and accident). Subsequently, we will create a Bayesian network including the variables from all 

categories. 

 

Train-Test-Split 

Since we do not build a prediction model, we do not use a train-test-split and use 100% of our 

observed data as input data.  
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Network Structure 

We apply Tree Augmented Naïve Bayes (TAN) structure, a simple Bayesian network model. 

Compared to the classic Naïve Bayes model, it allows a predictor to depend on another 

predictor. TAN reveals several relationships between the accident-related variables.  

 

Parameter learning 

For parameter learning, we apply Bayes adjustment for small cell counts.  

 

Predictor importance 

The estimated Bayesian networks emit predictor importance for each accident-related 

characteristic. Predictor importance indicates the relative importance of a predictor variable 

for the model estimation. Predictor importance is the result of a variance-based sensitivity 

analysis. Since interactions exist among our input factors and our datasets consist of more than 

a few hundred entries, we do not estimate predictor importance. Otherwise, we calculate with 

too much of an inaccuracy risk. (Saltelli, Tarantola, Campolongo, and Ratto, 2004) The 

following chapters show the Bayesian networks for each category (driver, vehicle, roadway and 

situation) and the overall Bayesian network. 

 

7.2 Bayesian network of driver-related variables 

The generation of the driver-related Bayesian network results in integrating 21 driver-related 

characteristics. These characteristics represent dummy variables. Table 56 shows the role of 

the variables within the driver-related Bayesian network. The target variable is severe 

casualties.  
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Target variable Predictor variables 

Degree of injury: 

• severe casualties 

Sex: 

• male 

• female 

 

Age class: 

• 16 to 18 

• 19 to 24 

• 25 to 34 

• 35 to 44 

• 45 to 54  

• 55 to 64 

• 65+ 

 

Impairment: 

• alcohol 

• fatigue 

• distraction 

 

Driving manoeuvre: 

• sudden braking 

• speeding 

• skidding/drifting 

• hitting a tree 

• hitting an obstacle on 

the road 

• hitting a guard rail 

• hit and run 

 

Driving licence type: 

• probationary driving 

licence 

 

Safety settings: 

• no safety belt applied 

 
Table 56: Driver-related characteristics for the Bayesian network generation. The network 
includes 21 driver-related characteristics as dummy variables (0=characteristics not present, 
1=characteristic is present) and the dichotomous target variable severe casualty (0=no severe 
casualty, 1=severe casualty). 

 

The driver-related Bayesian network represents a TAN network and uses Bayes adjustment for 

small cell counts for parameter learning. Figure 50 illustrates the generated Bayesian network 

for driver-related characteristics. The network enlightens detected relationships among the 

characteristics and illustrates the joint probabilities of these relationships. The network detects 

a relationship among severe casualties, ‘distraction’, and ‘hitting a tree’. It results in a joint 

probability of 0,46 %. The network also associates ‘hitting an obstacle on the road’ with 

‘distraction’ (joint probability is 0,00 %). This value appears extremely low, but we must 

consider joint probability rather than conditional probability. When analysing the conditional 

probability of ‘distraction’, severe casualty, and ‘hitting an obstacle on the road’, we see that 

distraction shows a share of 50 % in the corresponding subset. ‘Speeding’ is associated with 

‘hitting a guard rail’ (joint probability of 0,24 %), ‘hitting a tree’ (joint probability of 0,64 %), and 

‘fatigue’ (joint probability of 0,03 %). ‘Hit and run’ shows a relationship with ‘alcohol’ (joint 

probability of 0,10 %). The driving manoeuvre ‘sudden braking’ links to ‘skidding/drifting’ (joint 

probability of 0,03 %). The network also associates ‘skidding/drifting’ with ‘speeding’ (joint 

probability of 0,52 %). Age classes ‘16 to 18’ and ‘19 to 24’ show a directed graph to 
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‘probationary driving licence’ with a joint probability of 0,45 % for age class ‘16 to 18’ and 1,00 

% for age class ‘19 to 24’. Looking at the network, we can see differences among female and 

male drivers: female drivers are associated with ‘no safety belt applied’ (joint probability of 

0,52 %), whereas male drivers are associated with ‘fatigue’ (joint probability of 1,19 %) and 

‘alcohol’ (joint probability of 2,08 %). However, figure 31 illustrates that male and female drivers 

hold more or less the same share for ‘no safety belt applied’. 

For traffic safety, the driver-related Bayesian network reveals interesting and logical 

relationships. For example, the network reveals different associations among female and male 

drivers. Detecting differences among both sex groups is essential for target-specific traffic 

safety work. For example, there exists an association between young drivers and ‘probationary 

driving licence’ and severe casualties. Chapter 8 will investigate variable combinations with 

young drivers and ‘probationary driving licence’ in detail. The illustrated network also suggests 

that driving behaviour such as ‘speeding’ leads to ‘skidding/drifting’, ‘hitting a guard rail’, 

‘hitting a tree’, and, interestingly, ‘fatigue’. 

However, since the Bayesian network represents a condensed picture of possible variable 

combinations, many more variable combinations might exist than now detected in the 

Bayesian network. Therefore, we conduct a detailed analysis of all observed variable 

combinations and count their frequencies in chapter 8. 
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Figure 50: Driver-related Bayesian network. The network illustrates driver-related 
characteristics and their joint probabilities [%]. The root node severe casualties shows a 
probability or relative frequency of 16,90 % (3.430 of 20.293 single-vehicle accidents with a 
single occupation that occurred on the Austrian road network outside the built-up area 
between 2012 and 2019). 

 

Another way of illustrating Bayesian networks is a tabular representation shown in table 57.  
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Predictor variable 

P (SC) 
 

First node (N1) 

P (SC ∩ N1) 
 

Second node (N2) 

P (SC ∩ N1 ∩ N2) 

severe casualties 
 

alcohol 
 

male driver 

16,90 %  2,37 %  2,08 % 

severe casualties 
 

male driver 
 

fatigue 

16,90 %  12,11 %  1,19 % 

severe casualties 
 

probationary driving licence 
 

age class 19 to 24 

16,90 %  1,49 %  1,00 % 

severe casualties 
 

hitting a tree 
 

speeding 

16,90 %  1,57 %  0,64 % 

severe casualties 
 

no safety belt applied 
 

female driver 

16,90 %  3,44 %  0,52 % 

severe casualties 
 

age class 65+ 
 

speeding 

16,90 %  2,46 %  0,49 % 

severe casualties 
 

skidding/drifting 
 

speeding 

16,90 %  1,18 %  0,47 % 

severe casualties 
 

distraction 
 

hitting a tree 

16,90 %  2,12 %  0,46 % 

severe casualties 
 

probationary driving licence 
 

age class 16 to 18 

16,90 %  1,49 %  0,45 % 

severe casualties 
 

hitting the guard rail 
 

speeding 

16,90 %  0,89 %  0,24 % 

severe casualties 
 

hit and run 
 

alcohol 

16,90 %  0,26 %  0,10 % 

severe casualties 
 

sudden braking 
 

skidding drifting 

16,90 %  0,05 %  0,03 % 

severe casualties 
 

speeding 
 

fatigue 

16,90 %  2,85 %  0,03 % 

severe casualties 
 

hitting an obstacle on the road 
 

distraction 

16,90 %  0,03 %  0,00 % 

     

Table 57: Tabular illustration of the driver-related Bayesian network. The table illustrates 
detected relationships among driver-related characteristics and their joint probabilities [%]. 
The network is based on 20.293 single-vehicle accidents with a single occupation that occurred 
on the Austrian road network outside the built-up area between 2012 and 2019. 
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7.3 Bayesian network of vehicle-related variables 

The analysis of vehicle-related characteristics results in integrating 16 vehicle-related 

characteristics into the Bayesian network. These characteristics represent dummy variables, 

and the target variable is severe casualties.  Table 58 shows the role of vehicle-related variables 

for the Bayesian network generation process. 

 

Target variable Predictor variables 

Degree of injury: 

• severe casualties 

Engine power (kW): 

• 24-90 

• 90-110 

• 110+ 

 

Kilometrage (km): 

• 15.000-75.000 

• 150.000-200.00 

 

 

Technical settings: 

• airbag not deployed 

• insufficient vehicle 

security 

• vehicle fire 

 

Vehicle colour: 

• blue 

• brown 

• grey 

• green 

• red 

• black 

• silver 

• white 

 
 
Table 58: Role of variables within the vehicle-related Bayesian network. The network includes 
16 vehicle-related characteristics as dummy variables (0=characteristics not present, 
1=characteristic is present) and the dichotomous target variable severe casualty (0=no severe 
casualty, 1=severe casualty). 

 

The vehicle-related Bayesian network uses a TAN structure and Bayes adjustment for small cell 

counts for parameter learning. The resulting network (see figure 51) shows a direct graph from 

‘insufficient vehicle safety’ to ‘airbag not deployed’. 
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Figure 51: Vehicle-related Bayesian network. The network illustrates vehicle-related 
characteristics and their joint probabilities [%]. The root node severe casualties shows a 
probability or relative frequency of 16,90 % (3.430 of 20.293 single-vehicle accidents with a 
single occupation that occurred on the Austrian road network outside the built-up area 
between 2012 and 2019). 

 

 

Table 59 shows the vehicle-related Bayesian network. 

 

Predictor variable 

P (SC) 
 

First node (N1) 

P (SC ∩ N1) 

severe casualties 
 

airbag not deployed 

16,90 %  4,04 % 

 
 
Table 59: Tabular illustration of the vehicle-related Bayesian network. The table illustrates 
detected relationships among vehicle-related characteristics and their joint probabilities [%]. 
The network is based on 20.293 single-vehicle accidents with a single occupation that occurred 
on the Austrian road network outside the built-up area between 2012 and 2019. 

  



141 
 

7.4 Bayesian network of roadway-related variables 

The analysis of roadway-related characteristics integrates 17 characteristics into the Bayesian 

network. These characteristics represent dummy variables, and the target variable is severe 

casualties.  

 

Table 60 shows the role of variables for the roadway-related Bayesian network generation. 

 

Target variable Predictor variables 

Degree of injury: 

• severe casualties 

Speed limit (km/h): 

• driving ban 

• 50 

• 70 

• 80 

• 100 

• 130 

 

Road type: 

• highway 

• expressway 

• country Road 

• other roads 

Road characteristics: 

• intersection 

• curve 

• middle separation 

 

Road surface condition: 

• dry road 

• wet road 

• wintry conditions 

• sand or grit on the 

road 

 
 
Table 60: Role of variables within the roadway-related Bayesian network. The network includes 
17 roadway-related characteristics as dummy variables (0=characteristics not present, 
1=characteristic is present) and the dichotomous target variable severe casualty (0=no severe 
casualty, 1=severe casualty). 

 

We generate the Bayesian network using the TAN structure and Bayes adjustment for small 

cell counts for parameter learning. ‘Wet roads’ show a relation with curves, resulting in a joint 

probability of 1,78 %. ‘Curves’ are associated with ‘highway’ with a joint probability of 0,25 %. 

‘Highways’ show directed graphs to ‘middle separation’ (joint probability of 0,43 %) and ‘speed 

limit of 130 km/h’ (joint probability of 1,32 %). Severe casualties, ‘wintry conditions’, and ‘wet 

roads’ result in a joint probability of 1,82 %. The network also detects a relation among 

‘intersections’ and ‘curves’ with a joint probability of 0,02 %. The roadway-related Bayesian 

network suggests ‘wet roads’ to impact severe casualties. Also, three combinations exist that 

include ‘highways’ rather than the other road types (expressway, country road, or other roads). 
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On the other hand, in chapter 4.8, we could see that country roads are much higher in 

frequency among severe casualties. Chapters 8 and 9 will analyse road types in detail. 

 

 

Figure 52: Roadway-related Bayesian network. The network illustrates roadway-related 
characteristics and their joint probabilities [%]. The root node severe casualties shows a 
probability or relative frequency of 16,90 % (3.430 of 20.293 single-vehicle accidents with a 
single occupation that occurred on the Austrian road network outside the built-up area 
between 2012 and 2019). 

 

To have a more precise overview of the ranking of joint probabilities for each combination, we 

generate a tabular illustration of the roadway-related Bayesian network in table 61. The tabular 

network representation makes it easier to see that the triple combination of severe casualties, 

‘wintry conditions’, and ‘wet roads’ result in a higher joint probability than the combination of 

severe casualties, ‘wet road’ and ‘curve’. 
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Predictor variable 

P (SC) 
 

First node (N1) 

P (SC ∩ N1) 
 

Second node (N2) 

P (SC ∩ N1 ∩ N2) 

severe casualties 
 

wintry conditions 
 

wet road 

16,90 %  1,82 %  1,82 % 

severe casualties 
 

wet road 
 

curve 

16,90 %  4,30 %  1,78 % 

severe casualties 
 

highway 
 

speed limit 130 km/h 

16,90 %  2,05 %  1,32 % 

severe casualties 
 

highway 
 

middle separation 

16,90 %  2,05 %  0,43 % 

severe casualties 
 

highway 
 

curve 

16,90 %  2,05 %  0,25 % 

severe casualties 
 

intersection 
 

curve 

16,90 %  0,31 %  0,02 % 

 
Table 61: Tabular illustration of the roadway-related Bayesian network. The table illustrates 
detected relationships among roadway-related characteristics and their joint probabilities [%]. 
The network is based on 20.293 single-vehicle accidents with a single occupation that occurred 
on the Austrian road network outside the built-up area between 2012 and 2019. 
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7.5 Bayesian network of situation-related variables 

The analysis of situation-related characteristics integrates 14 characteristics into the Bayesian 

network. These characteristics represent dummy variables, and the target variable is severe 

casualties. Table 62 illustrates the role of variables to be integrated into the situation-related 

Bayesian network. 

 

Target variable Predictor variables Predictor variables 

Degree of injury: 

• severe casualties 

Daytime: 

• 0 a.m. to 6 a.m. 

• 6 a.m. to 12 p.m. 

• 12 p.m. to 6. p.m. 

• 6 p.m. to 0 a.m. 

 

Weekday: 

• Monday to Thursday 

• Friday to Sunday 

 

Season: 

• spring 

• summer 

• autumn 

• winter 

Weather conditions: 

• rain 

• snow 

 

Light conditions: 

• darkness 

• dusk or dawn 

 

 
Table 62: Role of variables within the situation-related Bayesian network. The network includes 
14 situation-related characteristics as dummy variables (0=characteristics not present, 
1=characteristic is present) and the dichotomous target variable severe casualty (0=no severe 
casualty, 1=severe casualty). 

 

The situation-related Bayesian network represents a TAN network and uses Bayes adjustment 

for small cell counts for parameter learning. The network shows relations between severe 

casualties, ‘winter’, and ‘rain’ (joint probability of 0,33 %). Also, it shows a relation between 

severe casualties, ‘winter’, and ‘snow’ (joint probability of 0,64 %). Considering the roadway-

related Bayesian network where we could see a relation between severe casualties, ‘wet road’, 

and ‘wintry conditions’, we can assume that weather and wet road conditions have a 

considerable impact on severe casualties. Additionally, the network detects a relationship 

between ‘summer’ and ‘darkness’ (joint probability of 1,16 %) and weekdays from Friday to 

Sunday combined with time between ‘0 a.m. and 6 a.m.’ (joint probability of 2,09 %). 
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Figure 53: Situation-related Bayesian network. The network illustrates situation-related 
characteristics and their joint probabilities [%]. The root node severe casualties shows a 
probability or relative frequency of 16,90 % (3.430 of 20.293 single-vehicle accidents with a 
single occupation that occurred on the Austrian road network outside the built-up area 
between 2012 and 2019). 
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Predictor variable 

P (SC) 
 

First node (N1) 

P (SC ∩ N1) 
 

Second node (N2) 

P (SC ∩ N1 ∩ N2) 

severe casualties 
 

Friday to Sunday 
 

0 a.m. to 6 a.m. 

16,90 %  8,10 %  2,09 % 

severe casualties 
 

summer 
 

darkness 

16,90 %  4,42 %  1,16 % 

severe casualties 
 

snow 
 

winter 

16,90 %  0,86 %  0,64 % 

severe casualties 
 

rain 
 

winter 

16,90 %  2,26 %  0,33 % 

 
Table 63: Tabular illustration of the situation-related Bayesian network. The table illustrates 
detected relationships among roadway-related characteristics and their joint probabilities [%]. 
The network is based on 20.293 single-vehicle accidents with a single occupation that occurred 
on the Austrian road network outside the built-up area between 2012 and 2019. 
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7.6 Bayesian network of all accident-related variables 

We integrate 52 characteristics from the four categories driver, vehicle, roadway, and situation 

as dummy variables into the overall Bayesian network. Table 64 presents the role of the 

characteristics within the overall Bayesian network.  

 

Category Variable Characteristics 

Driver 

Sex  male, female 

Age class 16 to 18, 19 to 24, 25 to 34, 35 to 44, 45 to 54, 55 to 64, 65+ 

Driving licence type probationary driving licence 

Distraction alcohol, distraction, fatigue 

Driving manoeuvre 
speeding, skidding/drifting, hitting a tree, hitting an obstacle on 

the road, hitting a guard rail, sudden braking, hit and run 

Safety settings no safety belt not applied 

Vehicle Vehicle settings airbag not deployed 

Roadway 

Speed limit 
driving ban, 50, 70, 80, 100, 130 

 

Road characteristics 
intersection, curve, middle separation 

 

Road condition wet road, wintry conditions, sand or grit on the road 

Road type highway, expressway, regional road, other roads 

Situation 

Weather conditions rain, snow 

Light conditions darkness, dusk or dawn 

Time: 0 to 6, 6 to 12, 12 to 6,6 to 0 

Weekday Monday to Thursday, Friday to Sunday 

Season winter, spring, summer, autumn 

 
Table 64: Role of variables within the overall Bayesian network. The network includes 69 
accident-describing characteristics as dummy variables (0=characteristics not present, 
1=characteristic is present) and the dichotomous target variable severe casualty (0=no severe 
casualty, 1=severe casualty).  
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The overall network represents a TAN network and uses Bayes adjustment for small cell counts 

for parameter learning. This network becomes too crowded for graphical visualisation, so  

table 65 presents the Bayesian network with variable combinations ranked by joint probability. 

On the one hand, the network illustrates relations we have already seen in the previous 

chapters (e.g., severe casualties, ‘male drivers‘, and ‘alcohol’ with a joint probability of 2,08 %). 

On the other hand, the network extends the knowledge about blackpatterns. 

The situation-related Bayesian network detects a relationship between severe casualties, 

weekdays Monday to Friday and between ‘0 a.m. and 6 a.m.’ with a joint probability of 2,09 %. 

Also, the overall Bayesian network shows a relationship between severe casualties, weekdays 

Friday to Sunday and ‘alcohol’ with a joint probability of 1,42 %. Subsequently, the network 

detects a relationship between ‘alcohol’ and ‘darkness’.  Therefore, we could articulate the 

assumption that nights during the weekend increase the number of drivers impaired by alcohol 

and thus the risk of severe casualties. Our logistics regression model (see chapter 5) also 

suggests that the weekdays from Monday to Thursday reduce the risk of severe casualties. 

The overall network substantiates the impact of ‘winter’, ‘wintry conditions’, and ‘wet roads’ to 

increase the risk of severe casualties (as we have already seen in the situation-related Bayesian 

network). Table 65 now illustrates the overall Bayesian network. 

 

Predictor variable 

P (SC) 
 

First node (N1) 

P (SC ∩ N1) 
 

Second node (N2) 

P (SC ∩ N1 ∩ N2) 

severe casualties 
 

rain 
 

wet road 

16,90 %  2,26 %  2,15 % 

severe casualties 
 

Friday to Sunday 
 

0 a.m. to 6 a.m. 

16,90 %  8,10 %  2,09 % 

severe casualties 
 

alcohol 
 

male driver 

16,90 %  2,37 %  2,08 % 

severe casualties 
 

wintry conditions 
 

wet road 

16,90 %  1,82 %  1,82 % 

severe casualties 
 

curve 
 

speeding 

16,90 %  6,23 %  1,52 % 

 
Table 65: Tabular illustration of the overall Bayesian network. The table illustrates detected 
relationships among accidents describing characteristics and joint probabilities [%]. The 
network is based on 20.293 single-vehicle accidents with a single occupation that occurred on 
the Austrian road network outside the built-up area between 2012 and 2019. 

  



149 
 

Predictor variable 

P (SC) 
 

First node (N1) 

P (SC ∩ N1) 
 

Second node (N2) 

P (SC ∩ N1 ∩ N2) 

severe casualties 
 

alcohol 
 

darkness 

16,90 %  2,37 %  1,51 % 

severe casualties 
 

Friday to Sunday 
 

alcohol 

16,90 %  8,10 %  1,42 % 

severe casualties 
 

highway 
 

speed limit 130 km/h 

16,90 %  2,05 %  1,32 % 

severe casualties 
 

probationary driving licence 
 

age class 19 to 24 

16,90 %  1,49 %  1,00 % 

severe casualties 
 

wintry conditions 
 

female driver 

16,90 %  1,82 %  0,75 % 

severe casualties 
 

snow 
 

wintry conditions 

16,90 %  0,86 %  0,72 % 

severe casualties 
 

hitting a tree 
 

speeding 

16,90 %  1,57 %  0,64 % 

severe casualties 
 

no safety belt applied 
 

female driver 

16,90 %  3,44 %  0,52 % 

severe casualties 
 

speeding 
 

wintry conditions 

16,90 %  2,85 %  0,49 % 

severe casualties 
 

skidding/drifting 
 

speeding 

16,90 %  1,18 %  0,47 % 

severe casualties 
 

probationary driving licence 
 

age class 16 to 18 

16,90 %  1,49 %  0,45 % 

severe casualties 
 

highway 
 

middle separation 

16,90 %  2,05 %  0,43 % 

severe casualties 
 

highway 
 

curve 

16,90 %  2,05 %  0,25 % 

 
Continuation of table 65: Tabular illustration of the overall Bayesian network. The table 
illustrates detected relationships among accidents describing characteristics and joint 
probabilities [%]. The network is based on 20.293 single-vehicle accidents with a single 
occupation that occurred on the Austrian road network outside the built-up area between 2012 
and 2019. 
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Predictor variable 

P (SC) 
 

First node (N1) 

P (SC ∩ N1) 
 

Second node (N2) 

P (SC ∩ N1 ∩ N2) 

severe casualties 
 

hitting a guard rail 
 

middle separation 

16,90 %  0,89 %  0,22 % 

severe casualties 
 

distraction 
 

middle separation 

16,90 %  2,12 %  0,21 % 

severe casualties 
 

hit and run 
 

alcohol 

16,90 %  0,26 %  0,10 % 

severe casualties 
 

wintry conditions 
 

fatigue 

16,90 %  1,82 %  0,09 % 

severe casualties 
 

sudden braking 
 

skidding drifting 

16,90 %  0,05 %  0,03 % 

severe casualties 
 

intersection 
 

curve 

16,90 %  0,31 %  0,02 % 

severe casualties 
 

hitting an obstacle on the road 
 

middle separation 

16,90 %  0,03 %  0,01 % 

 
Continuation of table 65: Tabular illustration of the overall Bayesian network. The table 
illustrates detected relationships among accidents describing characteristics and joint 
probabilities [%]. The network is based on 20.293 single-vehicle accidents with a single 
occupation that occurred on the Austrian road network outside the built-up area between 2012 
and 2019. 
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8. Road traffic accident data analysis V: Pattern 

recognition based on frequencies of variable 

combinations 

 

Based on the maximum combination value we demonstrated in chapter 4, we now analyse the 

most frequent variable combinations (patterns) among the four categories driver, vehicle’, 

roadway and situation. The calculation of the maximum combination value is based on a 

developed aggregation method (the PATTERMAX-method) that searches for identical variable 

combinations (blackpatterns) within the binary-structured road traffic accident database and 

counts their frequencies. Thus, we aggregate identical sequences of zeros and ones among 

our newly established binary road traffic accident database. A blackpattern is a variable 

combination that occurs more than ten times and includes two accident-describing 

characteristics. The maximum combination value indicates how often a specific variable 

combination (blackpattern) occurs within the historical database. Therefore, the blackpatterns 

shown in this chapter represent truly observed patterns. As we count the frequency of each 

detected blackpattern, we can calculate its relative frequency or joint probability. 

 

8.1 Blackpatterns among driver-related variables 

The blackpattern detection among driver-related variables works with 54 driver-related 

characteristics. The driver-related characteristics represent dummy variables. Thus, the 

PATERRMAX-method searches for identical sequences of zeros and ones within the 

characteristics and counts the frequencies of identical combinations. The advantage of this 

method is to identify and quantify patterns that were indeed observed between 2012 and 

2019. Also, the method does not assume the relationship among the variables. As the method 

results in many detected blackpatterns, we only illustrate selected blackpatterns in this chapter. 

Before we do so, we explain how to read the following blackpattern tables. 

 

How to read the blackpattern tables 

The left side of the table shows the most frequent blackpatterns (variable combinations) among 

the entire road traffic accident sample (n=20.293). The right side of the table shows the most 

frequent blackpatterns (variable combinations) among severe casualties (n=3.431). Thus, the 

right represents a subset of the left side. The idea behind it is to see whether there are different 

blackpatterns within severe casualties compared to all casualties. The column ‘Position’ in the 
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middle of the table shows the numbers one to ten. One refers to the most frequently observed 

blackpattern. Consequently, the table shows the ten most common blackpatterns among the 

selected characteristics. The column ‘Count’ indicates how often the blackpattern occurred 

within our observation period (2012-2019).  

We start with the most frequently observed blackpatterns among male and female drivers.  

Table 66 illustrates the ten most frequent blackpatterns for female drivers (ranked by the score 

in the middle of the table).  

 

 

Count 
Blackpatterns including  

female drivers and all casualties 
Position 

Blackpatterns including  

female drivers and severe casualties only 
Count 

1.132 
female, safety belt applied,  

age class 19 to 24 
1 

female, severe casualty,  

safety belt applied, age class 19 to 24 
92 

830 
female, safety belt applied,  

age class 25 to 34 
2 

female, severe casualty,  

safety belt applied, age class 25 to 34 
62 

432 
female, safety belt applied,  

age class 35 to 44 
3 

female, severe casualty,  

safety belt applied, age class 45 to 54 
56 

391 

female, safety belt applied,  

age class 19 to 24, probationary driving 

licence 

4 
female, severe casualty,  

safety belt applied, age class 65+ 
55 

382 
female, safety belt applied,  

age class 45 to 54 
5 

female, severe casualty,  

safety belt applied, age class 35 to 44 
44 

235 
female, safety belt applied,  

age class 65+ 
6 

female, severe casualty,  

safety belt applied, age class 55 to 64 
40 

212 
female, safety belt applied,  

age class 55 to 64 
7 

female, severe casualty, safety belt applied, 

age class 19 to 24, probationary driving 

licence 

32 

162 

female, safety belt applied,  

age class 16 to 18, probationary driving 

licence 

8 

female, severe casualty, safety belt applied, 

age class 16 to 18, probationary driving 

licence 

19 

154 
female, safety belt applied,  

age class 16 to 18 
9 

female, severe casualty,  

safety belt applied, age class 65+, fatigue 
14 

131 
female, safety belt applied,  

age class 19 to 24, speeding 
10 

female, severe casualty, safety belt applied, 

age class 19 to 24, speeding 
11 

 
Table 66: The ten most frequent blackpatterns among female drivers and other driver-related 
characteristics. The left side of the table represents the most frequent blackpatterns among the 
entire road traffic accident sample. The right side represents the most frequent blackpatterns 
among severe casualties. The right side is a subset of the left side.  The column ‘Count’ indicates 
how often the blackpattern occurred within our observation period (2012-2019). n=20.293 
single-vehicle accidents with single occupation and personal injury occurring outside the built-
up area on the Austrian road network (3.431 are severe casualties). 
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The ten most frequent combinations with ‘female drivers’ vary in age class but clearly show 

younger age classes at the top. However, the age class ‘65+’ appears in the third position 

among severe casualties. All ten combinations include the characteristic ‘safety belt applied’. 

The variable ‘probationary driving licence’ appears in the fourth and eighth most frequent 

combination among all casualties and the seventh and eighth most frequent combination 

among severe casualties. Interestingly, both sides include the variable ‘speeding’ in the tenth 

position for the same age class. Among severe casualties, we can see the variable ‘fatigue’ 

within the ninth most frequent combination, including age ‘group 65+’. In addition to the 

detected patterns among female drivers, table 67 shows the same blackpattern scheme for 

‘male drivers’. 

 

Count 
Blackpatterns including  

female drivers and all casualties 
Position 

Blackpatterns including  

female drivers and severe casualties only 
Count 

817 

 
male, safety belt applied, age class 19 to 24 1 

male, severe casualty, safety belt applied, 

age class 25 to 34 
149 

689 male, safety belt applied, age class 25 to 34 2 
male, severe casualty, safety belt applied, 

age class 19 to 24 
137 

377 male, safety belt applied, 35 to 44 3 
male, severe casualty, safety belt applied, 

age class 65+ 
120 

341 
male, safety belt applied, age class 19 to 24, 

probationary driving licence 
4 

male, severe casualty, safety belt applied, 

age class 45 to 54 
105 

303 male, safety belt applied, age class 65+ 5 
male, severe casualty, safety belt applied, 

age class 35 to 44 
85 

281 male, safety belt applied, age class 45 to 54 6 
male, severe casualty, no safety belt 

applied, age class 25 to 34 
60 

246 
male, safety belt applied, age class 25 to 34, 

alcohol 
7 

male, severe casualty, safety belt applied, 

age class 55 to 64 
58 

199 
male, safety belt applied, age class 19 to 24, 

alcohol 
8 

male, severe casualty, no safety belt 

applied, age class 19 to 24 
45 

189 male, safety belt applied, age class 55 to 64 9 
male, severe casualty, safety belt applied, 

age class 25 to 34, alcohol 
42 

171 
male, safety belt applied, age class 16 to 18, 

probationary driving licence 
10 

male, severe casualty, no safety belt 

applied, age class 45 to 54 
39 

 
Table 67: The ten most frequent driver-related variable combinations for male drivers. The left 
side of the table represents the most frequent blackpatterns among the entire road traffic 
accident sample. The right side represents the most frequent blackpatterns among severe 
casualties. The right side is a subset of the left side.  The column ‘Count’ indicates how often 
the blackpattern occurred within our observation period (2012-2019). n=20.293 single-vehicle 
accidents with single occupation and personal injury occurring outside the built-up area on the 
Austrian road network (3.431 are severe casualties). 
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Regarding the variables ‘safety belt applied’ and age classes, ‘male drivers’ show almost the 

same combinations as female drivers among all casualties. However, among severe casualties 

and ‘male drivers’, the variable ‘no safety belt applied’ occurs in the sixth, eighth and tenth 

place. In contrast to female drivers, the most frequent combinations among ‘male drivers’ 

include ‘alcohol’. Also, the variables ‘speeding’ and ‘fatigue’ do not appear among the top ten 

combinations for male drivers (neither among the total sample nor among severe casualties). 

‘Probationary driving licence’ appears within the fourth and tenth most frequent combination 

among all casualties, which is the case among female drivers in the fourth most frequent 

combination.  

Comparing patterns among female and male drivers reveals gender-specific differences in 

impairment and driving behaviour. ‘Probationary driving licence’, ‘speeding’ and ‘fatigue’ 

appear among ‘female drivers’ and ‘probationary driving licence’ and ‘alcohol’ appear among 

‘male drivers’.  

The tables above show that all age classes appear among the most frequent driver-related 

combinations. Therefore, we will not proceed with an in-depth investigation of patterns among 

different age classes but with patterns including the variable ‘probationary driving licence’. 

Chapter 4 illustrated that the variable ‘probationary driving licence’ has a significant 

relationship with severe casualties. Because this variable is associated with younger age 

classes, we have a detailed look at the most frequent combinations including ‘probationary 

driving licence’ (see table 68). 
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Count 

Blackpatterns including  

probationary driving licence and all 

casualties 

Position 

Blackpatterns including  

probationary driving licence and severe 

casualties only 

Count 

391 
probationary driving licence, safety belt 

applied, female, age class 19 to 24 
1 

probationary driving licence, severe 

casualty, safety belt applied, male, age 

class 19 to 24 

37 

341 
probationary driving licence, safety belt 

applied, male, age class 19 to 24 
2 

probationary driving licence, severe 

casualty, safety belt applied, female, age 

class 19 to 24 

32 

171 
probationary driving licence, safety belt 

applied, male, age class 16 to 18 
3 

probationary driving licence, severe 

casualty, safety belt applied, female, age 

class 16 to 18 

19 

162 
probationary driving licence, safety belt 

applied, female, age class 16 to 18 
4 

probationary driving licence, severe 

casualty, safety belt applied, male, age 

class 16 to 18 

18 

61 
probationary driving licence, safety belt 

applied, male, age class 19 to 24, alcohol 
5 

probationary driving licence, severe 

casualty, safety belt applied, male, age 

class 19 to 24, alcohol 

12 

58 

probationary driving licence, safety belt 

applied, female, age class 19 to 24, 

speeding 

6 

probationary driving licence, severe 

casualty, no safety belt applied, male, age 

class 19 to 24 

9 

46 

probationary driving licence, safety belt 

applied, female, age class 16 to 18, 

distraction 

7 

probationary driving licence, severe 

casualty, safety belt applied, male, age 

class 19 to 24, speeding 

7 

43 

probationary driving licence, safety belt 

applied, female, age class 19 to 24, 

distraction 

8 

probationary driving licence, severe 

casualty, safety belt applied, female, age 

class 19 to 24, distraction 

6 

43 

probationary driving licence safety belt 

applied, male, age class 19 to 24, 

speeding 

9 

probationary driving licence, severe 

casualty, safety belt applied, male age, 

class19 to 24, fatigue 

5 

38 

probationary driving licence, safety belt 

applied, female, age class 19 to 24, 

skidding 

10 

probationary driving licence, severe 

casualty, safety belt applied, male, age 

class 19 to 24, distraction 

5 

 
Table 68: The ten most frequent driver-related variable combinations including ‘probationary 
driver’s licence’. The left side of the table represents the most frequent blackpatterns among 
the entire road traffic accident sample. The right side represents the most frequent 
blackpatterns among severe casualties. The right side is a subset of the left side.  The column 
‘Count’ indicates how often the blackpattern occurred within our observation period (2012-
2019). n=20.293 single-vehicle accidents with single occupation and personal injury occurring 
outside the built-up area on the Austrian road network (3.431 are severe casualties). 

 

Among the investigated road traffic accident sample, the characteristic ‘probationary driving 

licence’ occurs in combination with ‘alcohol’, ‘speeding’, ‘distraction’ and ‘skidding/drifting’. In 

the event of severe casualties, the variable ‘probationary driving licence’ occurs in combination 

with ‘alcohol’, ‘no safety belt applied’, ‘speeding’, ‘distraction’ and ‘fatigue’. The variable 

applies to age classes ‘16 to 18’ and ‘19 to 24’. 
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The Austrian Road Safety Strategy declares ‘alcohol’ and ‘distraction’ as central challenges for 

reducing severe road traffic accidents. For the examined sample of single-vehicle accidents 

with single-occupancy, ‘fatigue’ represents an additional variable to be considered, especially 

among younger drivers. Since all three variables appear to play a relevant role in the examined 

sample, the following tables illustrate the top ten variable combinations for these three types 

of impairment (see table 69 to table 71).  

 

Count 
Blackpatterns including  

alcohol and all casualties 
Position 

Blackpatterns including  

alcohol and severe casualties only 
Count 

246 
alcohol, safety belt applied, male, age 

class 25 to 34 
1 

alcohol, severe casualty, safety belt 

applied, male, age class 25 to 34 
42 

199 
alcohol, safety belt applied, male, age 

class 19 to 24 
2 

alcohol, severe casualty, safety belt 

applied, male, age class 35 to 44 
29 

135 
alcohol, safety belt applied, male, age 

class 35 to 44 
3 

alcohol, severe casualty, safety belt 

applied, male, age class 19 to 24 
21 

114 
alcohol, safety belt applied, male, age 

class 45 to 54 
4 

alcohol, severe casualty, safety belt 

applied, male, age class 45 to 54 
20 

62 
alcohol, safety belt applied, male, age 

class 55 to 64 
5 

alcohol, severe casualty, no safety belt 

applied, male, age class 25 to 34 
13 

61 

alcohol, safety belt applied, male, age 

class 19 to 24, probationary driving 

licence 

6 

alcohol, severe casualty, safety belt 

applied, male, age class 19 to 24, 

probationary driving licence 

12 

35 
alcohol, safety belt applied, male, age 

class 65+ 
7 

alcohol, severe casualty, safety belt 

applied, male, age class 55 to 64 
11 

35 
alcohol, safety belt applied, female, 

age class 35 to 44 
8 

alcohol, severe casualty, safety belt 

applied, male, age class 65+ 
10 

34 
alcohol, no safety belt applied, 

male, age class 25 to 34 
9 

alcohol, severe casualty, safety belt 

applied, female, age class 45 to 54 
8 

33 
alcohol, safety belt applied, female, 

age class 45 to 54 
10 

alcohol, severe casualty, no safety belt 

applied, male, age class 45 to 54 
8 

 
Table 69: The ten frequent driver-related variable combinations including ‘alcohol’. The left 
side of the table represents the most frequent blackpatterns among the entire road traffic 
accident sample. The right side represents the most frequent blackpatterns among severe 
casualties. The right side is a subset of the left side.  The column ‘Count’ indicates how often 
the blackpattern occurred within our observation period (2012-2019). n=20.293 single-vehicle 
accidents with single occupation and personal injury occurring outside the built-up area on the 
Austrian road network (3.431 are severe casualties). 

 

Table 69 implies that the most frequent combinations with ‘alcohol’ impairment apply almost 

exclusively to ‘male drivers’. The joint probability of a severe casualty, ‘alcohol’ impairment and 

‘male driver’ is 2 % (total: 423). In contrast, the joint probability of a severe or fatal accident, 

impairment by alcohol and female driver is 0,2 % (total: 58). ‘Probationary driving licence’ and 

‘no safety belt applied’ occur within both categories. 
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Table 70 continues with the most frequent combinations with ‘distraction’. 

 

Count 
Blackpatterns including  

distraction and all casualties 
Position 

Blackpatterns including distraction and 

severe casualties 
Count 

93 
distraction, safety belt applied, female, age 

class 19 to 24 
1 

distraction, severe casualty, safety belt 

applied, male, age class 65+ 
16 

55 
distraction, safety belt applied, female, age 

class 25 to 34 
2 

distraction, severe casualty, safety belt 

applied, male, age class 45 to 54 
13 

51 
distraction, safety belt applied, male, age 

class 65+ 
3 

distraction, severe casualty, safety belt 

applied, male, age class 25 to 34 
12 

50 
distraction, safety belt applied, male, age 

class 19 to 24 
4 

distraction, severe casualty, safety belt 

applied, female, age class 65+ 
10 

46 

distraction, safety belt applied, female, age 

class 16 to 18, probationary driving 

licence 

5 
distraction, severe casualty, safety belt 

applied, female, age class 19 to 24 
9 

45 
distraction, safety belt applied, male, age 

class 25 to 34 
6 

distraction, severe casualty, safety belt 

applied, male, age class 65+ 
7 

43 

distraction, safety belt applied, female, age 

class 19 to 24, probationary driving 

licence 

7 

distraction, severe casualty, safety belt 

applied, female, age class 25 to 34, hitting 

obstacle next to the road 

7 

41 
distraction, safety belt applied, female, age 

class 65+ 
8 

distraction, severe casualty, safety belt 

applied, male, age class 10 to 24 
7 

34 

distraction, safety belt applied, male, age 

class 19 to 24, probationary driving 

licence 

9 

distraction, severe casualty, safety belt 

applied, female, age class 19 to 24, 

probationary driving licence 

6 

30 
distraction, safety belt applied, female, age 

class 45 to 54 
10 

distraction, severe casualty, safety belt 

applied, male, age class 19 to 24, hitting a 

tree 

6 

 
Table 70: The ten most frequent driver-related variable combinations including ‘distraction’. 
The left side of the table represents the most frequent blackpatterns among the entire road 
traffic accident sample. The right side represents the most frequent blackpatterns among 
severe casualties. The right side is a subset of the left side.  The column ‘Count’ indicates how 
often the blackpattern occurred within our observation period (2012-2019). n=20.293 single-
vehicle accidents with single occupation and personal injury occurring outside the built-up 
area on the Austrian road network (3.431 are severe casualties). 

 

Figure 31 shows that among severe casualties, ‘female drivers’ hold a higher share of 

‘distraction’ than ‘male drivers’. Interestingly, among severe casualties, the variables 

‘distraction’ and ‘hitting an obstacle next to road’ appear in seventh place and the variables 

‘distraction’ and ‘hitting a tree’ in tenth place. Both associations were also identified by the 

Bayesian networks (chapter 7.2). One advantage of the developed PATTERMAX-method is 

identifying logical links within the datasets. The ability of this method to do so becomes evident 

with this example. 
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Table 71 shows the results for the third most frequent type of impairment, ‘fatigue’.  

 

Count 
Blackpatterns including  

fatigue and all casualties 
Position 

Blackpatterns including fatigue and severe 

casualties only 
Count 

134 
fatigue, safety belt applied, male, age class 

19 to 24 
1 

fatigue, severe casualty, safety belt applied, 

male, age class 65+ 
26 

86 
fatigue, safety belt applied, male, age class 

25 to 34 
2 

fatigue, severe casualty, safety belt applied, 

male, age class 19 to 24 
22 

82 
fatigue, safety belt applied, male, age class 

65+ 
3 

fatigue, severe casualty, safety belt applied, 

male, age class 25 to 34 
20 

59 
fatigue, safety belt applied, male, age class 

35 to 44 
4 

fatigue, severe casualty, safety belt applied, 

male, age class 55 to 64 
19 

49 
fatigue, safety belt applied, male, age class 

45 to 54 
5 

fatigue, severe casualty, safety belt applied, 

male, age class 35 to 44 
19 

42 
fatigue, safety belt applied, male, age class 

55 to 64 
6 

fatigue, severe casualty, safety belt applied, 

female, age class 65+ 
14 

38 
fatigue, safety belt applied, female, age 

class 19 to 24 
7 

fatigue, severe casualty, safety belt applied, 

male, age class 45 to 54 
10 

37 
fatigue, safety belt applied, female, age 

class 65+ 
8 

fatigue, severe casualty, safety belt applied, 

female, age class 55 to 64 
9 

35 
fatigue, safety belt applied, male, age class 

19 to 24, probationary driving licence 
9 

fatigue, severe casualty, safety belt applied, 

female, age class 19 to 24 
8 

35 
fatigue, safety belt applied, female, age 

class 45 to 54 
10 

fatigue, severe casualty, safety belt applied, 

female, age class 25 to 34 
6 

 
Table 71: The ten most frequent driver-related variable combinations including ‘fatigue’. The 
left side of the table represents the most frequent blackpatterns among the entire road traffic 
accident sample. The right side represents the most frequent blackpatterns among severe 
casualties. The right side is a subset of the left side.  The column ‘Count’ indicates how often 
the blackpattern occurred within our observation period (2012-2019). n=20.293 single-vehicle 
accidents with single occupation and personal injury occurring outside the built-up area on the 
Austrian road network (3.431 are severe casualties). 
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The combination of ‘fatigue’ and male drivers turns out to be more common than the 

combination of ‘fatigue’ and female drivers. As shown in figure 31, severe casualties and ‘male 

drivers’ hold a higher share of ‘fatigue’ than severe casualties and ‘female drivers’. Young ‘male 

drivers’ (age classes ‘19 to 24’ and ‘25 to 34’) appear on top when analysing all casualties, 

whereas ‘male drivers’ over 65 appear on top when analysing severe casualties. Besides 

differences in age classes, no special variable is combined with ‘fatigue’, except for 

‘probationary driving licence’ in ninth place among all casualties. 

 We continue with the detailed investigation of driver-related variables and illustrate the most 

frequent combinations regarding driving manoeuvres. Chapter 4 revealed that the variables 

‘speeding’ and ‘skidding/drifting’ are associated with a high maximum combination value. 

Table 72 illustrates the most frequent variable combinations with ‘speeding’. 

 

Count 
Blackpatterns including  

speeding and all casualties 
Position 

Blackpatterns including speeding and 

severe casualties only 
Count 

131 
speeding, safety belt applied, female, age 

class 19 to 24 
1 

speeding, severe casualty, safety belt 

applied, male, age class 25 to 34 
16 

100 
speeding, safety belt applied, male, age 

class 19 to 24 
2 

speeding, severe casualty, safety belt 

applied, male, age class 45 to 54 
12 

86 
speeding, safety belt applied, female, age 

class 25 to 34 
3 

speeding, severe casualty, safety belt 

applied, female, age class 19 to 24 
11 

74 
speeding, safety belt applied, male, age 

class 25 to 34 
4 

speeding, severe casualty, safety belt 

applied, male, age class 25 to 34, hitting a 

tree 

10 

59 
speeding, safety belt applied, female, age 

class 35 to 44 
5 

speeding, severe casualty, safety belt 

applied, female, age class 45 to 54 
10 

58 

speeding, safety belt applied, female, age 

class 19 to 24, probationary driving 

licence 

6 
speeding, severe casualty, safety belt 

applied, male, age class 19 to 24 
10 

54 
speeding, safety belt applied, female, age 

class 19 to 24, skidding 
7 

speeding, severe casualty, safety belt 

applied, male, age class 25 to 34, hitting 

an obstacle next to the road 

8 

43 

speeding, safety belt applied, male, age 

class 19 to 24, probationary driving 

licence 

8 

speeding, severe casualty, safety belt 

applied, male, age class 19 to 24, 

probationary driving licence 

7 

40 
speeding, safety belt applied, female, age 

class 25 to 34, skidding 
9 

speeding, severe casualty, safety belt 

applied, male, age class 19 to 24, hitting 

an obstacle next to the road 

7 

40 
speeding, safety belt applied, female, age 

class 45 to 54 
10 

speeding, severe casualty, safety belt 

applied, male, age class 35 to 44  
6 

 
Table 72: The ten most frequent driver-related variable combinations including ‘speeding’. The 
left side of the table represents the most frequent blackpatterns among the entire road traffic 
accident sample. The right side represents the most frequent blackpatterns among severe 
casualties. The right side is a subset of the left side.  The column ‘Count’ indicates how often 
the blackpattern occurred within our observation period (2012-2019). n=20.293 single-vehicle 
accidents with single occupation and personal injury occurring outside the built-up area on the 
Austrian road network (3.431 are severe casualties). 
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Generally, ‘speeding’ is associated with younger age classes. Among all casualties, ‘speeding’ 

co-occurs with ‘probationary driving licence’ and ‘age class 19 to 24’ for female and male 

drivers. Also, ‘speeding’, ‘female drivers’, and ‘skidding’ appear combinedly among all 

casualties. Among severe casualties, ‘speeding’ results in combinations including ‘male drivers’ 

and ‘age class 25 to 34’ as well as the variables ‘hitting a tree’ and ‘hitting an obstacle next to 

the road’. For ‘male drivers’ and ‘age class19 to 24’ and severe casualties, ‘speeding’ co-occurs 

with the variables ‘probationary driving licence’ and ‘hitting an obstacle next to the road’. 

Table 73 illustrates the most frequent variable combinations with ‘skidding/drifting’. 

 

Count 
Blackpatterns including  

skidding/drifting and all casualties 
Position 

Blackpatterns including skidding/drifting 

and severe casualties only 
Count 

80 
skidding/drifting, safety belt applied, 

female, age class 19 to 24 
1 

skidding/drifting, severe casualty, female, 

age class 19 to 24, safety belt applied 
6 

55 
skidding/drifting, safety belt applied, 

female, age class 25 to 34 
2 

skidding/drifting, severe casualty, female, 

age class 45 to 54, safety belt applied 
5 

54 
skidding/drifting, safety belt applied, 

female, age class 19 to 24, speeding 
3 

skidding/drifting, severe casualty, male, 

age class 19 to 24, safety belt applied 
5 

40 
skidding/drifting, safety belt applied, 

female, age class 25 to 34, speeding 
4 

skidding/drifting, severe casualty, female, 

age class 65+, safety belt applied, 

speeding 

4 

38 

skidding/drifting, safety belt applied, 

female, age class 19 to 24, probationary 

driving licence 

5 

skidding/drifting, severe casualty, female, 

age class 25 to 34, safety belt applied, 

speeding 

4 

38 
skidding/drifting, safety belt applied, male, 

age class 19 to 24 
6 

skidding/drifting, severe casualty, male, 

age class 19 to 24, safety belt applied, 

speeding 

4 

34 
skidding/drifting, safety belt applied, 

female, age class 35 to 44 
7 

skidding/drifting, severe casualty, male, 

age class 55 to 64, safety belt applied 
4 

32 
skidding/drifting, safety belt applied, male, 

age class 19 to 24, speeding 
8 

skidding/drifting, severe casualty, female, 

age class 35 to 44, safety belt applied 
4 

32 
skidding/drifting, safety belt applied, 

female, age class 45 to 54 
9 

skidding/drifting, severe casualty, male, 

age class 35 to 44, safety belt applied, 

alcohol 

4 

25 

skidding/drifting, safety belt applied, male, 

age class 19 to 24, probationary driving 

licence, speeding 

10 

skidding/drifting, severe casualty, female, 

age class 19 to 24, safety belt applied, 

probationary driving licence 

3 

 
Table 73: The ten most frequent driver-related variable combinations including 
‘skidding/drifting’. The left side of the table represents the most frequent blackpatterns among 
the entire road traffic accident sample. The right side represents the most frequent 
blackpatterns among severe casualties. The right side is a subset of the left side.  The column 
‘Count’ indicates how often the blackpattern occurred within our observation period (2012-
2019). n=20.293 single-vehicle accidents with single occupation and personal injury occurring 
outside the built-up area on the Austrian road network (3.431 are severe casualties). 
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Figure 31 shows that female drivers hold a higher share in ‘skidding/drifting’ than ‘male drivers’ 

in the event of a severe road traffic accident. We can see that the two variables ‘speeding’ and 

‘probationary driving licence’ are combined with ‘skidding/drifting’. We can see ‘alcohol’ 

impairment combined with ‘skidding/drifting’ on the ninth position within severe casualties.  

The pattern detection among driver-related variables concludes with investigating co-

occurring variables regarding safety settings. Chapter 4 reveals that severe casualties show a 

relatively high joint probability with ‘no safety belt applied’. Therefore, we illustrate the most 

frequent blackpatterns with ‘no safety belt applied’ in table 74. 

 

Count 
Blackpatterns including  

no safety belt applied and all casualties 
Position 

Blackpatterns including  

no safety belt applied and severe casualties 

only 

Count 

34 
no safety belt applied, male, age class 25 to 

34, alcohol 
1 

no safety belt applied, severe casualty, 

male, age class 25 to 34 
60 

30 
no safety belt applied, male, age class 25 to 

34 
2 

no safety belt applied, severe casualty, 

male, age class 19 to 24 
45 

29 
no safety belt applied, male, age class 19 to 

24 
3 

no safety belt applied, severe casualty, 

male, age class 45 to 54 
39 

28 
no safety belt applied, male, age class 19 to 

24, alcohol 
4 

no safety belt applied, severe casualty, 

male, age class 35 to 44 
30 

22 
no safety belt applied, male, age class 35 to 

44, alcohol 
5 

no safety belt applied, severe casualty, 

male, age class 65+ 
29 

22 
no safety belt applied, male, age class 35 to 

44 
6 

no safety belt applied, severe casualty, 

male, age class 55 to 64 
18 

19 no safety belt applied, male, age class 65+ 7 
no safety belt applied, severe casualty, 

male, age class 25 to 34, alcohol 
13 

17 
no safety belt applied, female, age class 25 

to 34 
8 

no safety belt applied, severe casualty, 

female, age class 19 to 24 
10 

15 
no safety belt applied, male, age class 45 to 

54 
9 

no safety belt applied, severe casualty, 

male, age class 19 to 24, probationary 

driving licence 

9 

12 
no safety belt applied, male, age class 55 to 

64 
10 

no safety belt applied, severe casualty, 

female, age class 65+ 
9 

 
Table 74: Most frequent driver-related variable combinations including ‘no safety belt applied’. 
The left side of the table represents the most frequent blackpatterns among the entire road 
traffic accident sample. The right side represents the most frequent blackpatterns among 
severe casualties. The right side is a subset of the left side.  The column ‘Count’ indicates how 
often the blackpattern occurred within our observation period (2012-2019). n=20.293 single-
vehicle accidents with single occupation and personal injury occurring outside the built-up 
area on the Austrian road network (3.431 are severe casualties). 
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As table 74 shows, ‘no safety belt applied’ is the only variable with more blackpattern among 

severe casualties (60 combinations) than all casualties (34 combinations). Among all casualties, 

‘no safety belt applied’ appears together with ‘alcohol’ on the very top. Among severe 

casualties, this combination appears within the seventh most frequent combination. 

 

8.2 Blackpatterns among vehicle-related variables 

In this chapter, we explore recurring blackpatterns among vehicle-related variables. Vehicle-

related variables include engine power, kilometrage, vehicle colour, and safety settings. The 

characteristic ‘airbag not deployed’ shows a relatively high joint probability with severe 

casualties (see chapter 4.7). Thus, we are curious to see whether this characteristic appears 

among the ten most frequent blackpatterns. 

 

How to read the blackpattern tables 

The left side of the table shows the most frequent blackpatterns (variable combinations) among 

the entire road traffic accident sample (n=20.293). The right side of the table shows the most 

frequent blackpatterns (variable combinations) among severe casualties (n=3.431). Thus, the 

right represents a subset of the left side. The idea behind it is to see whether there are different 

blackpatterns within severe casualties compared to all casualties—the column ‘Position’ in the 

middle of the table shows the numbers one to ten. One refers to the most frequently observed 

blackpattern. Consequently, the table shows the ten most common blackpatterns among the 

selected characteristics. The column ‘Count’ indicates how often the blackpattern occurred 

within our observation period (2012-2019).  

 

Table 75 shows the most frequent vehicle-related blackpatterns. The blackpatterns include 

engine power, vehicle colour, kilometrage and safety settings. However, kilometrage does not 

appear within the top ten combinations. The characteristic ‘airbag not deployed’ is present in 

both categories but is ranked higher among all casualties (in the third to sixth most frequent 

combinations and the eighth and ninth combination). Among severe casualties, ‘airbag not 

deployed’ is present in the seventh and tenth most frequent combination. In total, ‘airbag not 

deployed’ occurred 819 times within severe casualties in the period under review. ‘Airbag not 

deployed’ occurred 7.318 times among accidents with slight injuries.  
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Count 
Blackpatterns including  

vehicle-related variables and all casualties 
Position 

Blackpatterns including  

vehicle-related variables and severe 

casualties only 

Count 

975 airbag deployed, 24-90 kW 1 severe casualty, airbag deployed, 24-90 kW 247 

958 airbag deployed, 24-90 kW, black 2 
severe casualty, airbag deployed, 24-90 

kW, black 
222 

939 airbag not deployed, 24-90 kW 3 
severe casualty, airbag deployed, 24-90 

kW, blue 
213 

890 airbag not deployed, 24-90 kW, black 4 
severe casualty, airbag deployed, 24-90 

kW, grey 
190 

868 airbag not deployed, 24-90 kW, blue 5 
severe casualty, airbag deployed, 24-90 

kW, red 
142 

805 airbag deployed, 24-90 kW, blue 6 
severe casualty, airbag deployed, 24-90 

kW, white 
122 

770 airbag deployed, 24-90 kW, green 7 
severe casualty, airbag not deployed, 24-

90 kW 
95 

641 airbag not deployed, 24-90 kW, grey 8 
severe casualty, airbag deployed, 110 kW, 

black 
90 

602 airbag not deployed, 24-90 kW, red 9 
severe casualty, airbag deployed, 24-90 

kW, green 
87 

533 airbag deployed, 24-90 kW, red 10 
severe casualty, airbag not deployed, 24-

90 kW, blue 
81 

 
Table 75: The ten frequent vehicle-related variable combinations. The left side of the table 
represents the most frequent blackpatterns among the entire road traffic accident sample. The 
right side represents the most frequent blackpatterns among severe casualties. The right side 
is a subset of the left side.  The column ‘Count’ indicates how often the blackpattern occurred 
within our observation period (2012-2019). n=20.293 single-vehicle accidents with single 
occupation and personal injury occurring outside the built-up area on the Austrian road 
network (3.431 are severe casualties). 

 

8.3 Blackpatterns among roadway-related variables 

After investigating blackpatterns among driver- and vehicle-related variables, we will now 

analyse roadway-related variables. Roadway-related variables include road characteristics 

(straight road, curve, intersection, middle separation) and road surface condition (dry road, 

wet road, wintry conditions, sand or grit on the road).  
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How to read the blackpattern tables 

The left side of the table shows the most frequent blackpatterns (variable combinations) among 

the entire road traffic accident sample (n=20.293). The right side of the table shows the most 

frequent blackpatterns (variable combinations) among severe casualties only (n=3.431). Thus, 

the right represents a subset of the left side. The idea behind it is to see whether there are 

different blackpatterns within severe casualties compared to all casualties. The column 

‘Position’ in the middle of the table shows the numbers one to ten. One refers to the most 

frequently observed blackpattern. Consequently, the table shows the ten most common 

blackpatterns among the selected characteristics. The column ‘Count’ indicates how often the 

blackpattern occurred within our observation period (2012-2019).  Table 76 shows the most 

frequent roadway-related variable combinations. Among all casualties, the combination of ‘wet 

road’ and ‘curve’ occurs more often than ‘wet road’ and ‘straight road’. Most accidents occur 

on ‘country roads’ within a ‘100 km/h speed limit’.  

 

Count 
Blackpatterns including roadway-related 

variables and all casualties 
Position 

Blackpatterns including roadway-related 

variables and severe casualties only 
Count 

2.279 
speed limit 100 km/h, regional road, dry 

road, straight road 
1 

severe casualty, speed limit 100 km/h, 

regional road, dry road, straight road 
615 

1.467 
speed limit 100 km/h, regional road, dry 

road, curve 
2 

severe casualty, speed limit 100 km/h, 

regional road, dry road, curve 
391 

1.243 
speed limit 100 km/h, regional road, wet 

road, curve 
3 

severe casualty, speed limit 100 km/h, 

regional road, wet road, straight road 
255 

996 
speed limit 100 km/h, regional road, wet 

road, straight road 
4 

severe casualty, speed limit 100 km/h, 

regional road, wet road, curve 
195 

954 
speed limit 100 km/h, regional road, wintry 

conditions, curve 
5 

severe casualty, speed limit 130 km/h, 

highway, dry road, straight road 
132 

900 
speed limit 100 km/h, regional road, wintry 

conditions, straight road 
6 

severe casualty, speed limit 100 km/h, 

regional road, wintry conditions, straight 

road 

116 

529 
speed limit 130 km/h, highway, dry road, 

straight road 
7 

severe casualty, driving ban, regional road, 

dry road, straight road 
83 

356 
driving ban, regional road, dry road, 

straight road 
8 

severe casualty, speed limit 70 km/h, 

regional road, dry road, straight road 
77 

335 
speed limit 70km/h, regional road, dry 

road, straight road 
9 

severe casualty, speed limit 100 km/h, 

another road, dry road, straight road 
74 

275 
speed limit 130 km/h, highway, wet road, 

straight road 
10 

severe casualty, speed limit 100 km/h, 

regional road, wintry conditions, curve 
70 

 
Table 76: Most frequent roadway-related variable combinations. The left side of the table 
represents the most frequent blackpatterns among the entire road traffic accident sample. The 
right side represents the most frequent blackpatterns among severe casualties. The right side 
is a subset of the left side.  The column ‘Count’ indicates how often the blackpattern occurred 
within our observation period (2012-2019). n=20.293 single-vehicle accidents with single 
occupation and personal injury occurring outside the built-up area on the Austrian road 
network (3.431 are severe casualties). 
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8.4 Blackpatterns among situation-related variables 

In addition to roadway-related variables, the analysis of situation-related variables explores 

blackpatterns consisting of weather conditions and light conditions. Weather conditions 

comprise ‘clear or overcast weather’, ‘rain’ and ‘snow’ while light conditions comprise 

‘daylight’, ‘darkness’ and ‘dusk or dawn’.  As we can see in chapter 4, these situation-related 

variables result in a relatively high maximum combination value. 

 

How to read the blackpattern tables 

The left side of the table shows the most frequent blackpatterns (variable combinations) among 

the entire road traffic accident sample (n=20.293). The right side of the table shows the most 

frequent blackpatterns (variable combinations) among severe casualties (n=3.431). Thus, the 

right represents a subset of the left side. The idea behind it is to see whether there are different 

blackpatterns within severe casualties compared to all casualties.  The column ‘Position’ in the 

middle of the table shows the numbers one to ten. One refers to the most frequently observed 

blackpattern. Consequently, the table shows the ten most common blackpatterns among the 

selected characteristics. The column ‘Count’ indicates how often the blackpattern occurred 

within our observation period (2012-2019).  

 

Table 77 represents the most frequent variable combinations for situation-related variables. 

Within both categories, most accidents occur in ‘daylight’ and during ‘clear or overcast 

weather’. 
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Count 
Blackpatterns including situation-related 

variables and all casualties 
Position 

Blackpatterns including situation-related 

variables and severe casualties only 
Count 

591 
6 p.m.to 12 a.m., Monday to Thursday, 

Winter, daylight, clear or overcast weather 
1 

severe casualty, 12 p.m. to 6 p.m., Monday 

to Thursday, Summer, daylight, clear or 

overcast weather 

134 

587 

12 a.m. to 6 p.m., Monday to Thursday, 

Summer, daylight, clear or overcast 

weather 

2 

severe casualty, 6 p.m. to 12 a.m., Monday 

to Thursday, Summer, daylight, clear or 

overcast weather 

101 

453 

6 a.m.  to 12 a.m., Monday to Thursday, 

Summer, daylight, clear or overcast 

weather 

3 

severe casualty, 12 p.m. to 6 p.m., Friday to 

Sunday, Summer, daylight, clear or overcast 

weather 

94 

442 

12 a.m. to 6 p.m., Monday to Thursday, 

Summer, daylight, clear or overcast 

weather 

4 

severe casualty, 6 p.m. to 12 a.m., Monday 

to Thursday, Winter, daylight, clear or 

overcast weather 

93 

439 

12 a.m. to 6 p.m., Friday to Sunday, 

Summer, daylight, clear or overcast 

weather 

5 

severe casualty, 12 p.m. to 6 p.m., Monday 

to Thursday, Autumn, daylight, clear or 

overcast weather 

89 

408 
6 p.m.to 12 a.m., Monday to Thursday, 

Winter, daylight, clear or overcast weather 
6 

severe casualty, 6 p.m. to 12 a.m., Monday 

to Thursday, Spring, daylight, clear or 

overcast weather 

85 

404 
6 p.m. to 12 a.m., Monday to Thursday, 

Spring, daylight, clear or overcast weather 
7 

severe casualty, 0 a.m. to 6 a.m., Friday to 

Sunday, Autumn, darkness, clear or 

overcast weather 

85 

400 
6 p.m. to 12 a.m., Monday to Thursday, 

Autumn, daylight, clear or overcast weather 
8 

severe casualty, 12 p.m. to 6 p.m., Friday to 

Sunday, Spring, daylight, clear or overcast 

weather 

82 

383 
12 p.m.  to 6 p.m., Monday to Thursday, 

Autumn, daylight, clear or overcast weather 
9 

severe casualty, 6 p.m. to 12 a.m., Friday to 

Thursday, Summer, daylight, clear or 

overcast weather 

81 

375 
6 p.m. to 0 a.m., Monday to Thursday, 

Winter, darkness, clear or overcast weather 
10 

severe casualty, 6 p.m. to 12 a.m., Friday to 

Sunday, Summer, daylight, clear or overcast 

weather 

 

 
Table 77: The then most frequent situation-related variable combinations. The left side of the 
table represents the most frequent blackpatterns among the entire road traffic accident 
sample. The right side represents the most frequent blackpatterns among severe casualties. 
The right side is a subset of the left side.  The column ‘Count’ indicates how often the 
blackpattern occurred within our observation period (2012-2019). n=20.293 single-vehicle 
accidents with single occupation and personal injury occurring outside the built-up area on the 
Austrian road network (3.431 are severe casualties). 
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8.5 Blackpatterns among all accident-related variables 

As a final investigation with the PATTERMAX-method, we detect the most frequent variable 

combinations (blackpatterns) among all accident-related variables. The variable characteristics 

represent dummy variables. Thus, a blackpattern represent an identical sequence of zeros and 

ones. The advantage of this method is to identify and quantify patterns that were indeed 

observed between 2012 and 2019. Also, the method does not assume the relationship among 

the variables. As the method results in many detected blackpatterns, we only illustrate selected 

blackpatterns in this chapter. Before we do so, we explain how to read the blackpattern tables. 

 

How to read the blackpattern tables 

The left side of the table shows the most frequent blackpatterns (variable combinations) among 

the entire road traffic accident sample (n=20.293). The right side of the table shows the most 

frequent blackpatterns (variable combinations) among severe casualties (n=3.431). Thus, the 

right represents a subset of the left side. The idea behind it is to see whether there are different 

blackpatterns within severe casualties compared to all casualties. The column ‘Position’ in the 

middle of the table shows the numbers one to ten. One refers to the most frequently observed 

blackpattern. Consequently, the table shows the ten most common blackpatterns among the 

selected characteristics. The column ‘Count’ indicates how often the blackpattern occurred 

within our observation period (2012-2019).  
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Count 
Blackpatterns including  

all content variables and all casualties 
Position 

Blackpatterns including  

all content variables and severe casualties 

only 

Count 

984 
dry road, clear or overcast weather, 

daylight 
1 

severe casualty, dry road, clear or overcast 

weather, daylight 
269 

673 
dry road, clear or overcast weather, 

daylight, airbag not deployed 
2 

severe casualty, dry road, clear or overcast 

weather, darkness 
104 

427 
dry road, clear or overcast weather, 

daylight, curve 
3 

severe casualty, dry road, clear or overcast 

weather, daylight, curve 
104 

306 
dry road, clear or overcast weather, 

daylight, airbag not deployed, curve 
4 

severe casualty, dry road, clear or overcast 

weather, daylight, airbag not deployed 
83 

256 
dry road, clear or overcast weather, 

darkness 
5 

severe casualty, dry road, clear or overcast 

weather, daylight, fatigue 
76 

245 
dry road, clear or overcast weather, 

daylight, fatigue 
6 

severe casualty, dry road, clear or overcast 

weather, darkness, curve 
57 

205 
dry road, clear or overcast weather, 

darkness, alcohol 
7 

severe casualty, dry road, clear or overcast 

weather, daylight, no safety belt applied 
56 

191 wet road, rain, daylight  8 
severe casualty, dry road, clear or overcast 

weather, daylight, distraction 
43 

181 
wet road, rain, daylight, airbag not 

deployed, curve 
9 severe casualty, wet road, rain, daylight 42 

178 
dry road, clear or overcast weather, 

darkness, airbag not deployed, curve 
10 

severe casualty, dry road, clear or overcast 

weather, darkness, no safety belt applied 
37 

 
Table 78: The top ten combinations among all accident-related variables. The left side of the 
table represents the most frequent blackpatterns among the entire road traffic accident 
sample. The right side represents the most frequent blackpatterns among severe casualties. 
The right side is a subset of the left side.  The column ‘Count’ indicates how often the 
blackpattern occurred within our observation period (2012-2019). n=20.293 single-vehicle 
accidents with single occupation and personal injury occurring outside the built-up area on the 
Austrian road network (3.431 are severe casualties). 

 

Comparing this table with the outcomes of binary logistic regression (chapter 5), decision trees 

(chapter 6) and Bayesian networks (chapter 7), we can see similar characteristics among the 

detected blackpatterns. The characteristics ‘airbag not deployed’ and ‘no safety belt applied’ 

appear among all the outcomes and are also part of the detected blackpatterns. The 

characteristics ‘curve’, ‘wet road’ and ‘darkness’ appear among all casualties and severe 

casualties. Regarding impairments, ‘alcohol’ and ‘fatigue’ appear among all casualties, whereas 

‘fatigue’ and ‘distraction’ appear among severe casualties.  

Thus far, we have only presented a selection of all blackpatterns. A disadvantage of the 

PATTERMAX-method is the generation of many blackpatterns (i.e., all blackpatterns observed 

between 2012 and 2019). The frequency of the blackpatterns is one way to classify their 

relevance. However, in the next step, we want to statistically examine all detected blackpatterns 

and present those significantly correlated with the target variable severe casualties. 
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9. Road traffic accident analysis part VI: Pattern 

significance 

 

Another key advantage of the PATTERMAX-approach is the assignability of each detected 

blackpattern to the recorded accident. A blackpattern corresponds to an added column within 

the binary accident database where zero refers to ‘blackpattern does not apply’, and one refers 

to ‘blackpattern applies’. This way, we know the exact distribution of the detected blackpattern 

among the historical road traffic accidents. Consequently, we can statistically evaluate whether 

the detected blackpattern significantly correlates with severe casualties. Therefore, the final 

analysis foresees the statistical evaluation of our detected blackpatterns. This chapter illustrates 

all blackpatterns showing a significant relationship with severe casualties. We apply Fisher’s 

exact test to estimate this relationship and calculate the Phi coefficient. Also, we illustrate the 

frequency of each blackpattern showing a significant relationship with the target variable 

severe casualties. 

 

9.1 Driver-related blackpattern significance 

The PATTERMAX-method detects 529 driver-related blackpatterns (variable combinations 

including at least two accident-describing characteristics). 37 % (total: 197) of the detected 

blackpatterns occur at least ten times. We evaluate the relationship of these blackpatterns with 

the target variable severe casualties by applying Fisher’s exact test. The resulting p-value 

indicates a significant relationship between a blackpattern and severe casualties. Also, we 

calculate the Phi coefficient to estimate the strength of the relationship. Of 197 driver-related 

blackpatterns occurring at least ten times between 2012 and 2019, 88 blackpatterns show a 

significant relationship with severe casualties. Table 79 shows an excerpt of these significant 

driver-related blackpatterns. The selection is based on the resulting Phi coefficient. A positive 

Phi coefficient indicates that the blackpattern occurs comparatively often among severe 

casualties. A negative Phi coefficient does not mean that the blackpattern does not occur 

among severe casualties. It comparatively occurs more often among casualties with slight 

injuries. Thus, table 79 illustrates blackpatterns showing a significant relationship with severe 

casualties and a positive Phi coefficient. 

The driver-related blackpattern evaluation reveals that blackpatterns that correlate with severe 

casualties primarily include ‘male drivers’. Table 79 only shows two significant blackpatterns 

with ‘female drivers’. Both patterns include young ‘female drivers’ with the characteristic ‘no 

safety belt applied’. Young ‘male drivers’ with the characteristic ‘no safety belt applied’ also 

significantly correlate with severe casualties. The characteristic ‘fatigue’ appears among 
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blackpatterns with ‘male drivers’ older than 35 years. Also, blackpatterns with ‘male drivers’ 

between the age classes ‘19 to 24’, ‘25 to 34’, and ‘55-64’, and the characteristic ‘speeding’ 

show a significant relationship with severe casualties. However, ‘no safety belt applied’ clearly 

is the most common characteristic in the below shown blackpatterns. 

 

Driver-related blackpatterns 

Fisher’s 

exact test 

p 

Phi 

coefficient 

ϕ 

Blackpattern 

Frequency 

n 

male, age 25 to 34, speeding 0,022 0,016 190 

male, age 65+, fatigue 0,004 0,02 147 

male, age 65+ distraction 0,014 0,018 127 

male, 25 to 34, no safety belt applied 0,000 0,092 110 

male, age 35 to 44, fatigue 0,046 0,015 106 

male, 19 to 24, no safety belt applied 0,000 0,073 87 

male, age 55 to 64, fatigue 0,001 0,023 86 

male, age 65+, no safety belt applied 0,000 0,068 83 

male, age 45 to 54, distraction 0,004 0,02 79 

male, 25 to 34, alcohol, no safety belt applied 0,028 0,016 74 

male, age 45 to 54, no safety belt applied 0,000 0,08 71 

male, age 35 to 44, no safety belt applied 0,000 0,071 64 

Male, age 55 to 64, speeding 0,009 0,02 46 

male, age 55 to 64, no safety belt applied 0,000 0,058 37 

male, age 19 to 24, speeding, no safety belt applied 0,000 0,055 37 

male, age 45 to 54, alcohol, no safety belt applied 0,021 0,018 29 

female, 25 to 34, no safety belt applied 0,004 0,022 28 

female, 19 to 24, no safety belt applied 0,002 0,024 26 

 
Table 79: Driver-related blackpatterns showing a significant relationship with the target 
variables severe casualties and a positive Phi coefficient. n=20.293 single-vehicle accidents 
with single occupation and personal injury occurring outside the built-up area on the Austrian 
road network (3.431 are severe casualties).  
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9.2 Vehicle-related blackpattern significance 

The PATTERMAX-method detects 440 vehicle-related blackpatterns, consisting of at least two 

vehicle-related characteristics. Of these 440 blackpatterns, 136 (31 %) occurred at least ten 

times between 2012 and 2019. We evaluate the relationship of these blackpatterns with the 

target variable severe casualties by applying Fisher’s exact test. The resulting p-value indicates 

a significant relationship between a blackpattern and severe casualties. Also, we calculate the 

Phi coefficient to estimate the strength of the relationship. A positive Phi coefficient indicates 

that the blackpattern occurs comparatively often among severe casualties. A negative Phi 

coefficient does not mean that the blackpattern does not occur among severe casualties. It 

comparatively occurs often among casualties with slight injuries. In total, 30 vehicle-related 

blackpatterns show a significant relationship with severe casualties. The statistical evaluation of 

vehicle-related blackpatterns shows that none of the significant blackpatterns receives a 

positive Phi coefficient. Since we only illustrate blackpatterns with a significant relationship and 

a positive Phi coefficient in this chapter, we cannot illustrate any vehicle-related blackpatterns. 

 

 

9.3 Roadway-related blackpattern significance 

The PATTERMAX-method detects 394 roadway-related blackpatterns, of which 129 (33 %) 

occur at least ten times between 2012 and 2019. A blackpattern is a variable combination 

including at least two roadway-related characteristics. We evaluate the relationship of these 

blackpatterns with the target variable severe casualties by applying Fisher’s exact test. The 

resulting p-value indicates a significant relationship between a blackpattern and severe 

casualties. Also, we calculate the Phi coefficient to estimate the strength of the relationship. A 

positive Phi coefficient indicates that the blackpattern occurs comparatively often among 

severe casualties. A negative Phi coefficient does not mean that the blackpattern does not 

occur among severe casualties. It occurs comparatively often among casualties with slight 

injuries. In total, 27 roadway-related blackpatterns significantly relate to the target variable 

severe casualties.  Thus, table 80 illustrates blackpatterns showing a significant relationship 

with severe casualties and a positive Phi coefficient. 
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Roadway-related blackpatterns 

Fisher’s 

exact test 

p 

Phi 

coefficient 

ϕ 

Blackpattern 

Frequency 

n 

speed limit 100km/h, country road 0,000 0,046 2.922 

speed limit 100km/h, country road, curve 0,000 0,036 1.914 

speed limit 100km/h, country road, wet road 0,003 0,021 1.253 

speed limit 100km/h, other road 0,001 0,024 340 

speed limit 100km/h, other road, curve 0,022 0,016 318 

driving ban, highway 0,014 0,017 166 

speed limit 100km/h, other road, wet road 0,031 0,016 162 

driving ban, other road 0,000 0,033 130 

speed limit 100km/h, highway, tunnel 0,022 0,017 18 

speed limit 100km/h, country road, bridge 0,007 0,022 15 

speed limit 80 km/h, country road, tunnel 0,005 0,023 11 

Table 80: Roadway-related blackpatterns showing a significant relationship with the target 
variables severe casualties and a positive Phi coefficient. n=20.293 single-vehicle accidents 
with single occupation and personal injury occurring outside the built-up area on the Austrian 
road network (3.431 are severe casualties). 

 

The most common variable combination among significant roadway-related blackpatterns 

with a positive Phi coefficient is ‘speed limit 100km/h’ and ‘country road’. The road 

characteristic ‘curve’ and the road condition ‘wet road’ are significant blackpatterns showing a 

relatively high frequency. This picture matches the outcomes of our previous analyses. The 

Bayesian networks (chapter 7.4) and the decision trees (chapter (6.4) also highlight ‘wet road’ 

and ‘curves’ as characteristics correlating with severe casualties. 
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9.4 Situation-related blackpattern significance 

The PATTERMAX-method detects 1.250 situation-related blackpatterns consisting of at least 

two situation-related characteristics. 297 (24 %) of these blackpatterns occurred at least ten 

times between 2012 and 2019. We evaluate the relationship of these blackpatterns with the 

target variable severe casualties by applying Fisher’s exact test. The resulting p-value indicates 

a significant relationship between a blackpattern and severe casualties. Also, we calculate the 

Phi coefficient to estimate the strength of the relationship. A positive Phi coefficient indicates 

that the blackpattern comparatively occurs more often among severe casualties. A negative 

Phi coefficient does not mean that the blackpattern does not occur among severe casualties. It 

occurs comparatively often among casualties with slight injuries. In total, 36 situation-related 

blackpatterns show a significant relationship with the target variable severe casualties.  

Table 81 illustrates blackpatterns with a positive Phi coefficient and a significant relationship 

with the target variable severe casualties (estimated with Fisher’s exact test) and the strength 

of this relationship (estimated with the Phi coefficient). 

 

Blackpatterns with a timeframe between ‘0 a.m. to 6 a.m.’, weekday Friday to Sunday, 

‘darkness’ and ‘right drift’ represent the most frequent and significant situation-related 

blackpatterns with a positive Phi Coefficient. The characteristic ‘darkness’ appears among all 

the below shown situation-related blackpatterns except for one. The situation-related logistic 

regression (chapter 5.5) also suggests that severe or fatal accidents decrease from Monday to 

Thursday on weekdays.  Regarding time, ‘6 p.m. to 0 a.m.’ frequently appears among the 

illustrated blackpatterns. Among meteorological seasons, no particularly conspicuous season 

shows up. As we can see in chapter 4, accidents are almost equally distributed over the 

meteorological seasons. 
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Situation-related blackpatterns 

Fisher’s 

exact 

test 

p 

Phi 

coefficient 

ϕ 

Blackpattern 

Frequency 

n 

0 a.m. to 6.a.m., Friday to Sunday, autumn, darkness, right drift 0,004 0,021 177 

0 a.m. to 6.a.m., Friday to Sunday, winter, darkness, right drift 0,014 0,017 166 

0 a.m. to 6.a.m., Friday to Sunday, spring, darkness, right drift 0,010 0,019 139 

6 p.m. to 0 a.m., Monday to Thursday, spring, darkness, right drift 0,006 0,02 135 

0 a.m. to 6.a.m., Friday to Sunday, autumn, darkness, left drift 0,001 0,023 129 

0 a.m. to 6.a.m., Friday to Sunday, winter, darkness, left drift 0,029 0,016 128 

6 p.m. to 0 a.m., Monday to Thursday, autumn, darkness, left drift 0,003 0,22 125 

0 a.m. to 6.a.m., Friday to Sunday, summer, darkness, left drift 0,000 0,025 103 

0 a.m. to 6.a.m., Friday to Sunday, spring, darkness, left drift 0,019 0,017 100 

0 a.m. to 6.a.m., Monday to Thursday, autumn, darkness, right drift 0,001 0,024 98 

0 a.m. to 6.a.m., Monday to Thursday, darkness, right drift 0,023 0,016 83 

6 p.m. to 0 a.m., Monday to Thursday, spring, darkness, left drift 0,022 0,017 82 

6 p.m. to 0 a.m., Friday to Sunday, darkness, left drift 0,001 0,025 74 

0 a.m. to 6.a.m., Monday to Thursday, summer, darkness, left drift 0,000 0,03 65 

6 p.m. to 0 a.m., Friday to Sunday, summer, darkness, left drift 0,001 0,026 64 

6 p.m. to 0 a.m., Friday to Sunday, daylight, left drift 0,016 0,018 45 

0 a.m. to 6.a.m., Monday to Thursday, autumn, rain, darkness, left drift 0,011 0,02 30 

12 p.m. to 6 p.m., Monday to Thursday, winter, dusk or dawn, left drift 0,300 0,017 26 

6 a.m. to 12 a.m., Monday to Thursday, summer, daylight 0,027 0,018 25 

6 p.m. to 0 a.m., Monday to Thursday, autumn, dusk/dawn, right drift 0,023 0,17 22 

6 p.m. to 0 a.m., Friday to Sunday, spring, rain, darkness, right drift 0,007 0,021 22 

6 a.m. to 12 p.m., Friday to Sunday, winter, rain, daylight, right drift 0,022 0,017 18 

 
Table 81: Situation-related blackpatterns showing a significant relationship with the target 
variables severe casualties and a positive Phi coefficient. n=20.293 single-vehicle accidents 
with single occupation and personal injury occurring outside the built-up area on the Austrian 
road network (3.431 are severe casualties). 
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9.5 Overall blackpattern significance 

The PATTERMAX-method detects 12.705 blackpatterns that include at least two accident-

related characteristics from all four categories (driver, vehicle, situation, and roadway). 144 

(1 %) of these blackpatterns occurred at least ten times between 2012 and 2019. We evaluate 

the relationship of these blackpatterns with the target variable severe casualties by applying 

Fisher’s exact test. The resulting p-value indicates a significant relationship between a 

blackpattern and the target variable severe casualties. Also, we calculate the Phi coefficient to 

estimate the strength of the relationship. A positive Phi coefficient indicates that the 

blackpattern occurs comparatively often among severe casualties. A negative Phi coefficient 

does not mean that the blackpattern does not occur among severe casualties. It occurs 

comparatively often among casualties with slight injuries. 11 overall detected blackpatterns 

significantly correlate with the target variable severe casualties. Table 82 illustrates 

blackpatterns with a positive Phi coefficient and a significant relation with the target variable 

severe casualties. 

As within the evaluation of driver-related blackpatterns, most of the illustrated significant 

blackpatterns include ‘male drivers’ (except for one blackpattern). Similar to roadway-related 

blackpatterns, the characteristics ‘speed limit 100 km/h’ and ‘country road’ frequently occur 

among the significant overall blackpatterns. Also, the variables ‘curve’ and ‘wet appear in the 

most frequent and significant overall blackpatterns with a positive Phi coefficient. Regarding 

road types, road conditions and road characteristics, this underpins the results of the previous 

analyses. Also, ‘male drivers’ and ‘fatigue’ appear in the below-shown patterns. This 

combination corresponds to the results of chapter 4, where ‘male drivers’ hold a higher share 

among severe casualties than female drivers. Furthermore, ‘right drift’ occurs twice in 

combination with ‘highway’ and ‘speed limit 130 km/h’. 

  



176 
 

Overall blackpatterns 

Fisher’s 

exact test 

p 

Phi 

coefficient 

ϕ 

Blackpattern 

Frequency 

n 

speed limit 130km/h, highway, right drift, male driver 0,001 0,027 44 

speed limit 100km/h, country road, left drift, male driver 0,000 0,032 41 

speed limit 100km/h, country road, curve, left drift, male driver 0,011 0,020 30 

country road, right drift, female driver 0,042 0,015 28 

speed limit 100km/h, country road, left drift, male driver, fatigue 0,001 0,028 20 

speed limit 130km/h, highway, drifting right, male driver, fatigue 0,040 0,015 16 

speed limit 100km/h, country road, wet road, age 25-34, right drift, male driver 0,001 0,027 12 

speed limit 100km/h, country road, left drift, male driver, no safety belt applied 0,000 0,031 10 

speed limit 100km/h, country road, darkness, right drift, male driver 0,003 0,026 10 

speed limit 80km/h, country road, right drift, male driver 0,016 0,020 10 

Table 82: Overall blackpatterns showing a significant relationship with the target variables 
severe casualties, and a positive Phi coefficient. n=20.293 single-vehicle accidents with single 
occupation and personal injury occurring outside the built-up area on the Austrian road 
network (3.431 are severe casualties). 
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10. Discussion and Outlook 

 

The main finding of this thesis is that the examination of recorded accident circumstances 

reveals blackpatterns (i.e., recurring combinations of accident-related characteristics) that are 

significantly associated with severe and fatal road traffic accidents. 

 

10.1 Content-related discussion 

 

Key insights for driver-related characteristics 

In the event of a severe road traffic accident, ‘no safety belt applied’ occurs more often than 

‘distraction, ‘fatigue’, or ‘alcohol’. The driver-related characteristic ‘no safety belt applied’ is the 

most noticeable factor in increasing the risk of a severe casualty. ‘No safety belt applied’ shows 

the highest Phi coefficient among all accident-describing characteristics. Furthermore, it results 

in the highest odds ratios compared to all accident-related characteristics in binary logistic 

regression. In addition, among driver-related characteristics, the most frequent blackpattern 

with ‘no safety belt applied’ and severe casualties appears more often than the most frequent 

blackpattern with ‘no safety belt applied’ and accidents with slight injuries. 

Additionally, when analysing severe casualties, the relative frequency of male drivers not 

applying a safety belt is twice as high as female drivers. The analysis shows that ‘no safety belt 

applied’ is associated with all age groups. Therefore, young drivers also show significant 

blackpatterns with severe casualties and 'no safety belt applied'.  

Furthermore, the most frequent blackpatterns with ‘no safety belt applied’ are also associated 

with ‘alcohol’. The analysis of driver-related accident characteristics reveals gender-specific 

differences, especially for different types of impairment. Male drivers steer three times more 

often than female drivers regarding' alcohol'. The characteristics ‘speeding’ and ‘fatigue’ do 

not show gender-specific differences. ‘Distraction’ shows a higher relative frequency among 

severe casualties and female drivers. Considering the co-occurring variables between severe 

casualties and male or female drivers, severe casualties with male drivers occur with the 

variable ‘no safety belt applied’ and 'alcohol’. Thus, there exist different blackpatterns among 

female and male drivers in the case of a severe or fatal road traffic accident that may be of 

interest for future road safety work. The Austrian Road Safety Strategy declares ‘alcohol’ and 

‘distraction’ as central challenges for reducing severe road traffic accidents. For the examined 
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sample of single-vehicle accidents with single-occupancy and personal injury, ‘fatigue’ 

represents an additional variable to be considered, especially among younger drivers. 

Among single-vehicle accidents outside the built-up area with a single occupation and 

personal injury, the relative frequency to observe a male driver in a severe casualty is 12 %. In 

comparison, the relative frequency to observe a female driver in a severe casualty is 5 %. In 

fact, among the illustrated blackpatterns showing a significant relationship with severe 

casualties, most blackpatterns include male drivers. 

In addition, the comparison of blackpatterns among female and male drivers reveals specific 

differences in driving behaviour and driving licence type. Among severe casualties, the relative 

frequency of female drivers owning a ‘probationary driving licence’ is higher than for male 

drivers. The most frequent blackpatterns with severe casualties and female drivers include 

‘probationary driving licence’, ‘fatigue’, and ‘speeding’.  The blackpattern ‘probationary driving 

licence’ and ‘alcohol’ appears more often among male drivers. Figure 31 shows that female 

drivers hold a higher share in ‘skidding/drifting’ than male drivers in the event of a severe or 

fatal road traffic accident. The blackpatterns illustrated in chapter 8 show that the two variables 

‘speeding’ and ‘probationary driving licence’ are combined with ‘skidding/drifting’, especially 

among female drivers.  

Equally important, when comparing age classes, age class ‘19 to 24’ and age class ‘25 to 34’ 

show the highest relative frequencies among severe casualties. Also, the characteristic 

‘probationary driving licence’ shows a relatively high number among severe casualties. 

 

Key insights for vehicle-related characteristics 

The vehicle-related characteristic ‘airbag not deployed’ shows a significant relationship with 

severe casualties when analysing it individually. ‘Airbag not deployed’ substantially impacts 

severe casualties among all the applied pattern recognition methods. The logistic regression 

model assigns the characteristic ‘airbag not deployed’ with a fundamentally high impact to 

increase the risk of observing a severe or fatal road traffic accident. Among severe casualties, 

a blackpattern including ‘airbag not deployed’ appears in fourth place.  

 

Key insights for roadway-related characteristics 

The univariate analysis and the pattern recognition approaches show that the most severe 

casualties occur on ‘country roads’ within a ‘speed limit of 100 km/h’. Regarding roadway-

related characteristics, the characteristics ‘curve’, ‘middle separation’, ‘intersection’, ‘tunnel’ 

and ‘bridge’ correlate with severe casualties. Some of these characteristics might rarely occur 

among the entire dataset. Still, if they occur, the outcome of the accident has a relatively high 

probability of resulting in a severe or fatal road traffic accident. ‘Wet roads’ and ‘wintry 
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conditions’ are the two road surface characteristics that significantly correlate with severe 

casualties. Also, both characteristics are present among all pattern recognition approaches. 

The Bayesian networks and decision trees highlight ‘wet road’ and ‘curves’ with severe 

casualties. Among the detected blackpatterns, the combination of ‘wet road’ and ‘curve’ occurs 

more often than ‘wet road’ and ‘straight road’. Thus, the road characteristic ‘curve’ and the road 

condition ‘wet road’ result in a significant blackpattern with a relatively high frequency.  

 

Key insights for situation-related characteristics 

The analysis of situation-related variables reveals that the variables ‘darkness’ and ‘Monday to 

Friday’ hold a higher share among severe casualties than among accidents with slight injuries 

(see figure 44).  Regarding daytime, blackpatterns with a timeframe between ‘0 a.m. to 6 a.m.’, 

weekday Friday to Sunday, ‘darkness’ and ‘right drift’ correlate significantly with severe 

casualties. The situation-related logistic regression (chapter 5.5) also suggests that severe or 

fatal accidents decrease from Monday to Thursday on weekdays. 

Also, the characteristics ‘rain’ and ‘snow’ hold a relatively high share among the number of 

severe or fatal road traffic accidents. As we can see in the presented blackpatterns, the most 

severe casualties occurred on ‘country roads’ within a ‘speed limit of 100 km/h’ combined with 

the characteristic ‘wet road’. Additional blackpatterns showing a significant relationship with 

severe casualties are  

• ‘highway’, ‘speed limit of 130 km/h’, ‘wet roads’, and 

• ‘highway’, ‘speed limit of 130 km/h’, and ‘wintry conditions’.  

Based on these results, it may be helpful to evaluate carefully whether further mandatory speed 

reductions in case of poor road and weather conditions could significantly reduce severe or 

fatal road traffic accidents. To evaluate the impact of such a measure, the generation of an 

accident prediction model could be considered. The estimated 95 % confidence intervals may 

serve as input variables to develop an accident prediction model.  

It remains to be mentioned that an extension of the so-called ‘Road Safety Inspections’ (Nadler, 

Nadler, and Strnad, 2016) towards ‘country roads’ is currently being considered and discussed. 

The recognized blackpatterns underpin the significance of this project.  
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10.2 Methodological discussion 

Contingency tables and conditional and joint probabilities are simple and yet powerful tools 

to explore the data and to get a first impression of a variable’s impact on severe casualties. For 

example, male drivers share 57 % and female drivers 43 % within the investigated road traffic 

accidents. The probability of a severe casualty is 12 % for a male driver and 5 % for a female 

driver. We can see that this distribution does not correspond to the initial distribution among 

all accidents. Also, conditional probability is an integral part of the presented pattern 

recognition methods, especially for the Bayesian networks and the PATTERMAX-method. As 

we can see in chapter 4, multiple variables show a significant relationship with severe 

casualties. However, when looking at the resulting Phi coefficient, we can see that the maximum 

Phi coefficient is .240 for the variable ‘no safety belt applied’, representing a weak relationship. 

Given the assumption that road traffic accidents do not present monocausal events, we 

consider the maximum combination value a more reliable measure to facilitate the pattern 

recognition process. It analyses all variables and reveals how often a specific variable 

combination (blackpattern) appears within the dataset. The calculation of the maximum 

combination value is aligned with the developed aggregation method (PATTERMAX-method). 

The PATTERMAX-method searches for identical variable combinations (blackpatterns) within 

the binary-structured road traffic accident database and counts their frequencies. At this point, 

we can calculate the respective conditional probability of the detected blackpattern among 

severe casualties. 

Binomial logistic regression has proven to be a powerful tool to estimate a variable’s impact 

on severe casualties compared to all accident-describing characteristics. For this study, the 

benefit of binary logistic regression is twofold: 

• it helps us to exclude characteristics having no significant relationship with our target 

variable severe casualties; 

• it helps us estimate the impact of an accident-related characteristic on severe 

casualties compared to all investigated accident characteristics. 

For the subsequent pattern recognition procedures, this is essential information to identify 

blackpatterns that 

• exclusively include accident-related characteristics having a significant relationship 

with severe casualties; 

• can be assessed because of knowing the impact of each included accident-related 

characteristic on severe casualties. 

Decision trees represent an efficient way to depict ‘the big picture’ off accident-describing 

characteristics that influence severe casualties. However, they do not provide in-depth 

knowledge about accident circumstances and substantial differences among male and female 

drivers or between road types or weekdays. Nevertheless, we consider decision trees a helpful 
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tool to estimate which variables impact severe casualties. Also, decision trees represent a first 

step towards pattern detection as they associate accident-related characteristics with each 

other. 

After that, we conclude that the Bayesian network approach is suitable for visualising more 

detailed and relevant combinations of accident-related characteristics. Furthermore, the 

Bayesian network approach automatically estimates the joint probability of a detected 

sequence of characteristics among all casualties. Nonetheless, the PATTERMAX-approach 

queries blackpatterns in even greater detail. Within our newly established binary road traffic 

accident dataset, the PATTERMAX-method searches for identical sequences of zeros and ones, 

counts their frequencies and calculates their conditional probabilities. A blackpattern is a 

variable combination that occurs more than ten times and includes two accident-describing 

characteristics. 

What is more, the PATTERMAX-approach exclusively identifies variable combinations that 

indeed occurred within the recorded accident data while the Bayesian network approach 

generalises certain relationships among accident-related variables. Thus, the PATTERMAX-

approach allows us to gain better insights into valid and recurring blackpatterns (i.e., recurring 

combinations of accident-related characteristics). Another key advantage of the PATTERMAX-

approach is assigning a detected blackpattern to the recorded accident. A blackpattern 

corresponds to an added column within the binary accident database where zero refers to 

‘blackpattern does not apply’, and one refers to ‘blackpattern applies’. This way, we know the 

exact distribution of the detected blackpattern among the historical road traffic accidents. This 

way, we can statistically evaluate whether the detected blackpattern shows a significant 

relationship with severe casualties. 

To sum up, we recommend the application of binomial logistic regression and the 

PATTERMAX-method to gain in-depth knowledge about recurring accident blackpatterns and 

the impact of accident-describing characteristics to increase severe casualties. 

 

10.3 Limitations and disclaimer 

Superordinate framework conditions (e.g., traffic policy, StVO, safety culture, etc.) and how 

police officers record accidents strongly influence accident data quality. For example, 

assessing the alleged main cause of the accident represents a subjective assessment by the 

police officer who fills out the accident data sheet on site. Depending on how differently police 

officers may be trained on accident surveys, there always exists a so-called evaluation bias 

going along with road traffic accident records. This thesis does not examine these 

superordinate parameters. The focus is placed exclusively on examining the officially available 

traffic accident data. Since the alleged main cause of the accident is of higher meaning than all 

the other entries in the datasheet (i.e., all the other accident-describing variables), this thesis 
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does not analyse the alleged main causes of accidents. It strictly focuses on the investigation 

of the accompanying circumstances. 

Therefore, the interpretation of the identified accident patterns requires caution. 

It is to emphasize that this thesis presents a pattern recognition method based on recorded 

(historical) road traffic accidents. The target is to reveal evidence-based patterns (i.e., recurring 

accident conditions) from historical road traffic accidents records. The results of this thesis will 

allow us to say how likely it is to find a specific pattern in a single-vehicle accident with a single 

occupation. The thesis does not focus on building a prediction model for road traffic accidents. 

It may, however, be possible to estimate the probability of death or severe injury in the event 

of a single-vehicle accident based on the proposed model. 

The thesis exclusively relates to the analysis of historic accident data and the question of 

whether recurring patterns (variable combinations) underly these data. It does not include any 

data on traffic performance. Therefore, it is not possible to deduce how likely it is for a 

particular accident or a specific accident pattern to occur. However, the work makes it possible 

to say that if an accident occurs, with what probability will it show a particular pattern (based 

on historical road traffic accidents only). 

There are further points to consider when using or interpreting the data: 

• The focus is on pattern recognition based on recorded (i.e., historic) road traffic 

accidents. 

• Traffic performance is not part of this thesis. Therefore, it is impossible to conclude 

how likely one specific accident or accident pattern is to occur. 

• Conditional and joint probabilities describe how likely it is for a variable to appear 

among severe casualties. It does not indicate its occurrence throughout traffic 

performance (i.e., a 16 % probability for male drivers does not suggest that 16 % of 

male drivers have an accident. It simply demonstrates that male drivers appear in 

16 % of all historic traffic accidents). 

• The accident-related variables do not occur with equal frequency (i.e., their actual 

frequency is unknown). A direct comparison of the variables is not valid (i.e., an 80 

km/h speed limit on regional roads is less common than a 100 km/h speed limit. 

Thus, comparing the occurrences of severe casualties within both speed limits and 

concluding that fatal road accidents occur more often within 100 km/h speed limits is 

invalid. A valid comparison requires additional knowledge on the respective speed 

limits within the road network and traffic performance within the speed limits, which 

is not considered or estimated in this work). It is, however, valid to descriptively 

compare the underlying patterns within an 80 km/h speed limit and a 100 km/h 
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speed limit and to see whether there appear different patterns within different speed 

limits. 

• The prediction of future accidents is not part of this thesis. Still, we will suggest a 

bootstrapping resampling method to build a robust parameter estimation with 95 % 

confidence intervals. 

 

10.4 Outlook 

In general, there exist three fields of application for future work. 

• Expansion of the PATTERMAX-method and binomial logistic regression on further 

accident types: This thesis illustrates a pattern recognition approach for road traffic 

accident data using single-vehicle accidents with single-occupancy. In Austria, there 

exist ten different types of accidents. Further work may foresee the application of the 

established methods on the remaining types of accidents. 

 

• Developing an accident prediction model: We suggest generating a detailed 

investigation based on accident-describing variables. In particular, the 95 % 

confidence intervals showing the probability range of a characteristic among severe 

casualties may be of interest to set up an accident prediction model. A prediction 

model can estimate the impact of selected measures on accident occurrences. Such a 

model could serve as a decision-making tool by estimating the statistically valid effect 

of different measures to reduce severe and fatal road traffic accidents. 

 

• Consideration of traffic performance: Further research may also integrate traffic 

performance as an additional accident-describing variable. To estimate the 

explanatory power of traffic performance on accident frequency and degree of injury, 

sufficient data quality on traffic performance must be available. Furthermore, the 

analysis with traffic performance should examine all accident types and not only a 

selected accident sample. 
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11. Summary 

 

Chapter one provides an overview of the thesis context, research gap, research questions and 

associated targets, and the scientific classification of the thesis. 

Chapter two represents a theoretical chapter where we dive into road traffic accident data (i.e., 

uncertainty, noise and bias, rare events, heterogeneity, and over-dispersion). Also, we discuss 

pattern recognition methods within this chapter.  

Chapter three looks at the existing accident types, and we present the reasons for choosing 

one specific accident type on which we test and run the pattern recognition approach. 

Moreover, we discuss the characteristics of the existing road traffic accident database and 

point out the reasons for the data reprocessing task. This reprocessing task leads to 

developing a binary database that includes more than 150 accident-related variables. Next, we 

categorise these accident-related variables into the following scheme: driver-related variables, 

vehicle-related variables, roadway-related variables, and situation-related variables. The third 

chapter concludes with the definition of the dependent variable. 

After the three introductory chapters, we jump into analysis part I in chapter four. This chapter 

presents each accident-related characteristic in detail with the help of descriptive statistics. 

First, we show how often a variable occurs among all accidents (severe and fatal accidents and 

accidents with slight injuries). Second, we only show how often a variable occurs among severe 

and fatal accidents. Based on the contingencies, we calculate the probability for a severe or 

fatal road accident given the respective accident-related variable. 

Additionally, we apply Fisher's exact test to determine a possible relationship between an 

accident-related variable and the dependent variable (severe and fatal road accidents). 

Fisher's exact test shows whether there is a significant relationship between the two variables 

and outputs the Phi coefficient to determine the strength of the relationship. Also, we generate 

a robust parameter estimation (95% confidence intervals showing the likelihood of a variable 

and a severe or fatal accident to occur) by applying a bootstrap resampling method on the 

newly established accident database. Moreover, we calculate a so-called maximum 

combination value as the first value towards blackpattern detection. This value tells us how 

often a specific variable co-occurs with (an)other accident-related variable(s). 

Chapter five uses binomial logistic regression to estimate each variable's impact on severe 

road traffic accidents with an odds ratio (i.e., the strength of the relationship between an 

accident-related variable and the target variable severe casualties (i.e., severe or fatal 

accidents) compared to all observed variables). By knowing which variable appears to increase 
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the risk of a severe road traffic accident, we can assess the overall impact of the detected 

blackpatterns. 

Furthermore, we grow decision trees using the CHAID-algorithm in chapter six. Decision trees 

generate a generalized tree-like structure of variable combinations that appear to increase the 

probability of a severe road traffic accident. At this point, binomial logistic regression and 

decision trees help us identify variables that aggravate an accident outcome and the respective 

degree of injury. However, since we are interested in gaining in-depth knowledge of recurring 

variable combinations (blackpatterns), we zoom deeper into the underlying data structures. 

Consequently, we apply an explorative Bayesian network paradigm in chapter seven. Also, we 

apply a developed pattern detection method based on the frequency of variable combinations 

and joint probabilities (PATTERMAX-method) in chapter eight. 

In chapter nine, the pattern recognition process concludes with a statistical evaluation of 

whether the detected blackpatterns show a significant relationship with the target variable 

severe casualties. Like the beginning, so the end, and we calculate Fisher's exact test and the 

Phi coefficient. 

To conclude, we highlight the most aggravating accident-related variables and blackpatterns 

in chapter ten. Also, we compare the applied pattern recognition methods. The discussion 

highlights the advantages and the limitations of the PATTERMAX-method combined with 

binomial logistic regression to gain in-depth knowledge about accident circumstances. The 

combined application of both methods enables a precise detection and comparison of 

blackpatterns. For example, do accident patterns among female drivers differ from accident 

patterns among male drivers? Do accident patterns on regional roads within an 80 km/h speed 

limit differ from those on a 100 km/h speed limit? Additionally, the combined approach 

enables the assessment of the detected blackpatterns with the help of an odds ratio. 

Within the research outlook, we propose to expand the PATTERMAX-approach in combination 

with binomial logistic regression on other accident types. The newly established accident 

database might also serve as a reliable source for accident prediction. The estimated 95% 

confidence intervals may represent input variables for a prediction model. 
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